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Abstract

The age-shape of mortality is U-shaped for many species, declining from birth

to sexual maturity, then rising in adulthood (Finch, 1990; for mammals, see

Caughley, 1966). Although there are exceptions, the U-shape is su¢ ciently

common to invite explanation. Here we show why the optimal life history of

a species with determinate growth is likely to have this shape, building on

a literature which showed these optimal patterns through numerical simula-

tion (Cichon, 1997; Cichon and Kozlowski, 2000). Our approach assumes a

physiological technology characterized by a linear budget constraint for en-

ergy at each age. We also incorporate intergenerational transfers, so that a

young organism can allocate more energy than it produces. Using dynamic

programming to solve the optimization problem, we �nd the forces shaping

the optimal age-shape of mortality, and show the conditions under which it

will be U-shaped.
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1 Introduction

A seminal paper by Hamilton (1966) argued that mortality must inevitably

rise with age after sexual maturity, because mortality at older ages has an

increasingly small e¤ect on reproductive �tness, and therefore deleterious

mutations which raise mortality at these ages will be selected out of the

population less rapidly. Deleterious mutations with e¤ects at older ages will

therefore be present at a higher frequency in the population (mutation se-

lection balance, see Charlesworth, 1994 and 2001) than those with e¤ects at

younger ages. Hamilton recognized two problems with this theory: �rst, it

predicted constant mortality from birth until sexual maturity, rather than

declining; and second, it predicted that mortality would rise rapidly follow-

ing cessation of reproduction, whereas some species, including humans, have

substantial postreproductive survival. The left arm of the U is therefore

missing, and the right arm rises too early and too fast.

Building on Hamilton�s approach, Lee (2003) formalized the idea, dis-

cussed by Hamilton and others, that parental care or more generally inter-

generational transfers could deal with both these problems. Following birth,

mortality at earlier ages would be o¤set to some degree by the resources

thereby saved from future transfers, which could be used for �tness enhanc-

ing investment in siblings or in adults. Put di¤erently, mortality would be

selected to conserve the cumulative transfers already made to a juvenile, or

equivalently, to conserve the expected net transfers to be made to others in

the future. Thus mortality declines until sexual or economic maturity. At

the same time, mortality in adult years a¤ects �tness not only through lost

future reproduction, as Hamilton emphasized, but also through lost future

parental care or intergenerational transfers, an e¤ect which diminishes with

age but can continue for many years post reproduction, and may even include

investment in grando¤spring.
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The optimality literature mentioned earlier does not concern itself with

genetic mechanisms, implicitly assuming that bene�cial mutations will be

positively selected whether their �tness impact is large or small, and for the

most part ignoring the accumulation of deleterious mutations (see Barton and

Partridge, 1993 for a clear discussion of the relation of the two approaches).

Because optimality theory ignores the size (as opposed to the sign) of the

�tness impact of a mutation, the mathematical results are di¤erent, and

the qualitative conclusions can be di¤erent. Hamilton, and many after him,

believed he had proven that senescence, marked by rising adult mortality,

was universal and inevitable. With some quali�cation (Bauditsch, 2005; Lee,

2003) his conclusion appears broadly correct if the only genetic mechanism

driving evolution is mutation accumulation. But his theory is not about the

optimal life history, it is about the force of selection by age. Vaupel et al

(2004) show that an optimal life cycle can exhibit �at or even declining adult

mortality, or �negative senescence�. This pattern can be optimal for species

that exhibit indeterminate growth, that is do not have a speci�c mature body

size, and instead continue to grow and reproduce concurrently as adults.

They note that real world organisms exhibiting indeterminate growth may

have this mortality pattern, including some plants and �sh. For species with

determinate growth, that grow to a mature size before reproducing and then

switch to reproduction without further growth, they are unable to derive

negative senescence. The Vaupel et al negative senescence result does not

disprove the positive senescence result of Hamilton. A comprehensive theory

would include both e¤ects, and either could dominate depending on details

of the assumptions.

In this paper, we concentrate speci�cally on the case of determinate

growth, which characterizes mammals and birds, for example. We set up

a model of optimal life history combining the e¤ects of both growth and

transfers, and analyze the optimal pattern of age-speci�c mortality rates that
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maximizes �tness. We explicitly derive the bene�ts and costs of a change in

age-speci�c mortality, identifying the conventional Hamilton e¤ect, the com-

pounded growth e¤ect, the intergenerational transfer e¤ect, and the cost-

bene�t tradeo¤. We show why the optimal age-speci�c mortality will have

declining juvenile mortality and is likely to have rising adult mortality, yield-

ing a U-shape, and how, for species with transfers, the accumulated transfers

a¤ect the mortality schedule in youth and in old ages. We also compare our

results with Robson and Kaplan (2003), who also derive a U-shape mortality

schedule.

The remainder of this paper is arranged as follows. Section 2 presents

the model of optimal life history, which we use to study the determination

and change of age-speci�c vital rates. The third and fourth sections analyze

the survival probability schedules for immature and mature ages respectively,

and compare our results with the literature. The �nal section concludes.

2 A Model of Optimal Life History

An intergenerational transfer necessarily involves more than one generation,

so our model of optimal life history explicitly characterizes a species�lineage.

Details can be found in Chu and Lee (2005); here we only provide a sketch.

Consider an individual who is not fertile past some age y.2 To avoid the

complications of mating and sexual reproduction, we consider a population

of females reproducing asexually. To unify the terminology and notation, we

call the age interval [a; a+1) age a+1, and assume that all decisions a¤ecting

age a + 1 are made at time a. The probability that an individual survives

from point a toward point a + 1 (that is, toward the end of the open age

interval) is denoted pa+1. Her fertility decision at age a produces ma children

2y could be a very large number, and could also coincide with the upper bound of the

species�life.
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towards the end of her age a, conditional on her survival:

At age a, a typical individual expects to have energy or resources which,

following Abram and Ludwig (1995), Cichon (1997) and Vaupel et al. (2004),

she allocates to fertility (ma), maintenance (pa) and growth (za). The dis-

posable food or energy acquired by an individual aged a depends on her body

size, denoted wa. Speci�cally, her age-a energy constraint is written as

bapa + cama + daza � �awa; 8a (1)

where ba, ca, da are constant coe¢ cients, which express the rate at which

energy can be used to achieve various levels of survival, fertility or growth.

Term �a is a production coe¢ cient linking body-size with the net production,

or acquisition through foraging, of disposable energy. The body size of an

individual grows according to the rule: wa+1 � wa + za: The linear form of

the budget constraint is also used in Vaupel et al. (2004).3

We expect that natural selection will maximize reproductive �tness, mea-

sured as the future representation of an individual�s genes. Consider an in-

dividual age a at time t. Let Va;t(:) be her direct and indirect contribution

to the number of descendants at some future date � . Here t measures the

remaining length of time until � , when �tness is assessed, so for individuals

closer to � , t is smaller.

2.1 Solution and Interpretation

We begin by taking age 1 as a benchmark and trying to solve the dynamics

in terms of its value function, V1;:(w1). For any a 2 f1; 2; :::; yg, let the age-a
3Appropriate nonlinear e¤ects would include an upper bound of unity for pa, with

increasing costs as this limit is approached; and a direct dependence of both survival

and fertility on on body weight wa as in Vaupel et al (2004). Other nonlinearities might

occur depending on whether optimization starts with a blank slate, or from a preexisting

physiological structure.
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strategy be �a � (pa;ma; za) and its feasible set be 
a(wa). For any t, the

Bellman (1957) equations can be written as (2), for which the interpretation

is provided in the Appendix.

V1;t(w1) = max
�12
1(w1)

[p1m1V1;t�1(w1) + p1V2;t�1(w1 + z1)] (2)

...

Vy�1;t(wy�1) = max
�y�12
y�1(wy�1)

[py�1my�1V1;t�1(w1) + py�1Vy;t�1(wy�1 + zy�1)]

Vy;t(wy) = max
�y2
y(wy)

[pymyV1;t�1(w1)]:

We denote the optimum in (2) by ��a = (p
�
a;m

�
a; z

�
a). Let l

�
a � p�1 � � � p�a and

�a � l�am
�
a. Starting from the equation for age-y, lagging each equation by

one period, and substituting it into the equation in (2) one line above, we

obtain the desired formulation in terms of V1;::

V1;t = �1V1;t�1 + �2V1;t�2 + � � �+ �yV1;t�y: (3)

In the steady state, expression (3) is a simple di¤erence equation for V1;t, of

which the solution is V1;t = A1�
t
1 + � � �+Ay�ty; where the Ai�s are constants,

and ��s are solved from the characteristic equation of (3): �t = �1�
t�1 +

�2�
t�2+ � � �+�y�t�y: Since the individual is maximizing clonal reproduction,

for large � only the largest root of the characteristic equation is relevant, call

it �� and normalize the associated Ai to be 1. Then we have: V1;t = (�
�)t 8t

in the steady state.4 In view of the de�nition of �a, we can rewrite (3) as the

Euler-Lotka equation:

1 =

yX
a=1

l�am
�
a�
�a: (4)

4The equation system in (2) can be rewritten in dynamic form as in McNamara (1991)

and Houston and McNamara (1999), where it is shown that under some technical condi-

tions the dynamics will converge to the stable-population ��.
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The largest root is the steady state population growth rate. In summary, we

know that the solution to the value function in (2) has the form V1;t = (�
�)t,

where �� is the Euler-Lotka parameter solved from (4).

There are two reasons why we propose the primal problem in (2) to study

our problem. First, some researchers start by assuming that maximizing

�tness is equivalent to maximizing expected life time reproduction, R0 =P
a lama. However,

P
a lama is speci�c to the generation in question, and

is inappropriate for an analysis of intergenerational interactions, which is

part of our focus. Second, most previous literature on population evolution,

to our knowledge, assumes that the Euler-Lotka parameter is the target of

maximization. In the analysis above, we derive what a sel�sh individuals

that maximizes its own clonal replication would do, and show that the ob-

jective to be optimized turns out to be the Euler-Lotka parameter. As we

shall see below, the optimization conditions corresponding to (2) are natural

and straightforward, and help us understand the bene�t-cost tradeo¤s in life

history analysis.

2.2 The Determinate Growth Pattern

Many species exhibit "determinate growth", which is to say that they �rst

grow without reproducing and then cease growth and become fertile once

they have reached their adult size. Our main interest is in species that have

intergenerational interactions, such as mammals or birds, and these exhibit

determinate growth. It has been proved in Chu and Lee (2005) that the

determinate growth pattern is optimal in our model: ma and za cannot be

interior solutions at the same time. This intuitive pattern was also found in

Taylor et al. (1974) and Vaupel et al. (2004). If the switch occurs after r

periods, then in our notation the organism would have ma = 0 in the �rst

a � r periods, and would have za = 0 when a � r + 1.
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3 Immature Mortality Trajectories

For most relevant cases, transfers are from a mature adult to an immature

juvenile. We shall consider a transfer from a particular mature age j � r+1
to individuals at an immature age i � r. Later we expand the discussion to
consider more than one age of making and receiving a transfer.

3.1 Specifying the Constraints

Suppose age j gives away Tj units of energy and age i receives Ri units of

energy. Since we allow Ri to be zero, there is no loss of generality to assume

that all immature ages (i = 1; � � � ; r) receive some Ri. With determinate
growth, the energy of an age j adult that is not transferred is all allocated

between pj andmj, so her budget constraint, according to (1), can be written

as

mj =
�jwj � bjpj � Tj

cj
: (5)

At an immature age i, energy is all allocated between pi and zi, so the budget

constraint can be written as

zi =
� iwi � bipi +Ri

di
: (6)

Recall that at each immature age i, body weight accumulates according

to wi+1 = wi + zi: If an age-i receives an additional unit of energy transfer,

using (6) iteratively we see that the compound e¤ect on her mature body size

(wr+1) would be

@wr+1
@Ri

� Ki =
1

di

�
1 +

� i+1
di+1

�
� � �
�
1 +

�r
dr

�
; (7)

Leaving aside the �rst term 1=di in (7), we see that Ki is decreasing in

i since each pair of parentheses contains a term greater than or equal to

1, and the number of such factors decreases as i rises. This means that
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it is more e¢ cient to accumulate somatic capital early than late, for the

increased capital raises the output from foraging, which in turn leads to

faster future growth. Alternatively, if Ki refers to neural capital or brain

size, the compound factor Ki can be understood as an e¤ect of learning by

doing (see Robson and Kaplan 2003).

Let gi(:) be the technology for converting transfers into energy for a child

at age-i . Speci�cally, in order for the age-i to receive Ri energy, the energy

transferred by the senior should be gi(Ri): Here we assume that the convert-

ing technology is di¤erent for each receiving age so that we attach subscript

i�s to g(:); the more general case would be that the technology di¤ers for

each receiving age and each transferring age, in which case g(:) will have

subscripts ij : gij(:). We do not see how this complication would lead to new

insights, so we ignore it.

The gi function should satisfy gi(0) = 0, and g0i(:) > 0.
5 If the age-j adult

transfers Tj of resources to juveniles of all ages, and juveniles at each age i

receive Rij, then in a stable population the following transfer identity must

hold:

g1(R1j)�
j�1

p1 � � � pj�1
+
g2(R2j)p1�

j�2

p1 � � � pj�1
+ � � �+ gr(Rrj)p1 � � � pr�1�

j�r

p1 � � � pj�1
= Tj: (8)

In the above expression, Rij is allowed to be zero for each i. When more

than one age makes transfers, the above formula should hold for each j, and

(6) should be rewritten as

zi =
� iwi � bipi +

P
j Rij

di
: (60)

The maximization in (2) can be written more brie�y as:

�t = max
�s
p1 � � � pr[pr+1mr+1�

t�r�1 + � � �+ pr+1 � � � pymy�
t�y]; (9)

5If we hope to have an interior solution for Ri, then g00(:) should be positive.

9



where � is the Euler-Lotka parameter, and is also the age-1 indirect utility

V1;t solved from (5) for su¢ ciently long time perspective. Substituting in mj

in (5) for j � r + 1 and zi in (60) for i � r, we can derive the �rst order

condition for age speci�c survival probability pk�s. We shall �rst present our

discussion for the case of immature ages in this section.

3.2 The First Order Condition for pk

Consider the most general case in which adults of all ages provide some

non-negative transfers to juveniles of all ages. For a juvenile aged k � r to
maximize �tness, the �rst order condition for the optimal pk, after factoring

out a constant, is the following:

�pk =M+

yX
j=r+1

pj
cj

h�yg1(R1j)
p1 � � � pr

+ � � �+ �
y�k+1gk(Rkj)

pk � � � pr

i
�pkbkKkN = 0; (10)

where �pk is the partial di¤erentiation of the right hand side of (9) with

respect to pk,

M � pr+1mr+1�
y�r + � � �+ pr+1 � � � pymy�;

and

N �
h�r+1pr+1�y�r

cr+1
+ � � �+

�ypr+1 � � � py�
cy

i
:

The interpretation of M , N , and Kk will be given as we proceed.

When we di¤erentiate �tness � with respect to pk, as in (10) above, we

are considering a movement of pk along the e¢ cient (maximal) trait surface,

away from the optimum position on this surface where it is tangent to a �tness

contour (Partridge and Barton, 1993). Because the movement is along the

surface, the increase or decrease in pk absorbs or releases energy and thereby

a¤ects growth, fertility or transfers, depending on whether k is pre or post

sexual maturity. Because this movement is evaluated at the optimum, these
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e¤ects must exactly counterbalance the opportunity cost of the change in pk;

so that the derivative is zero. This is di¤erent from the deleterious mutational

perturbations considered by Hamilton (1966) or Lee (2003), which resulted

from an ine¢ cient increase in mortality with no o¤setting release of resources,

and therefore no o¤set. This is a movement to the inside of the e¢ cient trait

surface, not along it. That is why the derivative equals zero in the present

analysis, while the derivative would indicate a non-zero �tness impact in the

Hamilton or Lee analysis. Real mutations could be of either sort, or of other

kinds, and their consequences would vary accordingly.

If we totally di¤erentiate (9) and arrange terms, we �nd��d�+�pkdpk =

0: This equation gives us d�=dpk, the marginal impact of a change in age-

speci�c mortality pk on the �tness parameter �. Note that �� is just a

normalization term that is independent of k, involving some average ages,

and therefore does not concern us here.

In (10), M is the weighted expected lifetime fertility, conditional upon

survival to age r+ 1. This is closely related to Hamilton�s �tness impact for

a mortality perturbation at age k. It expresses the direct e¤ect on �tness

of the mortality change, but does not include the o¤setting changes in other

variables. SinceM is independent of the immature age k in question, Hamil-

ton concluded that the force of selection against a mortality increase is the

same for all immature ages. For this reason, as he noted (p.12), his theory

cannot explain the high infant mortality and declining juvenile mortality of

many species.6

The second term in (10) gives the cumulated transfers expended per in-

dividual that attains age k, including the transfers wasted on other juveniles

6Note also that M is calculated conditional on survival to sexual maturity and the

start of reproduction at age r+ 1. In Hamilton�s result, the lost reproduction is weighted

by survival from birth to each age, not from the age of maturity. This is an important

di¤erence between the �tness impact calculation and the optimality condition.
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who died before reaching age k. This amount, which of course increases in

age k, captures Lee�s (2003) accumulated transfer e¤ect. In particular, when

k is smaller (larger), the �tness cost of "sunk" transfers up to age k is smaller

(larger), hence an increase in mortality for age k is less (more) costly. An-

other way to think of this is that the death of a young individual releases the

future resources that would have been transferred to it, thereby allowing for

other uses such as investment in siblings or better nutrition for the adults,

o¤setting the loss. This o¤set is smaller at older juvenile ages, and therefore

mortality at these ages is more costly. Selection therefore will be stronger

against the mortality of the elder juveniles relative to that of infants, and

optimal mortality will be lower at these older juvenile ages.7

The �rst two terms in (10) capture the two bene�ts of a mutation that

exogenously raises pk. In the context of bene�cial mutations and optimal

life history, as opposed to deleterious mutations and mutation accumulation

theory, the increase in pk has an opportunity cost, as described by (60). This

tradeo¤ cost is ignored under the mutation accumulation approach, because

deleterious mutations are assumed to be ine¢ cient, yielding no bene�ts else-

where, as discuseed earlier. But varying pk along the e¢ cient surface entails

o¤setting costs or bene�ts. For an age-k juvenile to slightly increase her

survival probability by dpk, she must decrease the energy allocated to the

accumulation of her body weight by bk(dpk). This reduction in energy from

growth will in turn shrink her mature size (wr+1) by Kk according to (7),

which we discussed earlier. For each unit reduction in mature size wr+1, the

impact on �tness (force of selection) is the expected reduction in weighted

7Alternatively, to avoid "sunk cost" fallacies, terms in the square brackets of (10) can

be thought of as the expected future net life time transfers to be made by an incividual age

k, suitably survival weighted and discounted by the population growth rate. The bigger

is k, the bigger will be these expected net transfers, and the bigger the �tness gain from

raising pk.
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lifetime fertility, and that is in fact the N term:

N �
@
Py

j=r+1 pj�
y�j+1mj

@wr+1
=
@
Py

j=r+1 pj�
y�j+1 �jwr+1�bjpj�Tj

cj

@wr+1

Finally, the accumulation of weight at age k will be realized only with prob-

ability pk, and this explains the third term in (10).

3.3 Searching for the Optimal Juvenile pk

Equating �pk to zero, we get the �rst order condition of pk. It can be easily

seen that @�pk=@pk < 0, hence the second order condition for maximization is

satis�ed. Simultaneously solving for (p1; � � � ; pr) explicitly would be tedious,
but for the purpose of comparing the shape of pk�s for di¤erent k�s, we can

rewrite �pk = 0 as follows:

pk =
M +

Py
j=r+1

pj
cj

h
�yg1(R1j)

p1���pr + � � �+ �y�k+1gk(Rkj)
pk���pr

i
bkKkN

; (11)

Note that (11) is not an explicit reduced-form solution for pk, for the right

hand side of (11) still has pk in it. However, it helps us understand how pk
varies with age, k. We know from the above discussion that the numerator

of (11) is increasing in k due to the transfer e¤ect, but what about the

denominator?

In view of (7) the denomenator of (11) can be written as

KkbkN =
Nbk
dk

h�
1 +

�k+1
dk+1

�
� � �
�
1 +

�r
dr

�i
:

Evidently, terms in the square bracket of this expression are non-increasing in

k, for the compounded e¤ect of accumulating size becomes smaller as age in-

creases, since then compounding operates over fewer periods. Note that this

important e¤ect, which we have not found in the existing literature, does not

depend on transfers, and therefore helps to explain why mortality declines
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following birth in species that do not have parental care. Here is a di¤erent

way to think about it. Reproductive success depends on both mature size

and survival to maturity. Survival from birth to maturity is the product of

the survival probabilities at each age, and the order of multiplication is irrel-

evant. But in the case of body size, early growth is more bene�cial because

the larger size that results permits more production of energy which leads to

more growth or higher survival, and so on. This is the compounding e¤ect.

The optimal strategy, therefore, will involve sacri�cing some early survival

for more rapid growth, and then improving survival later when resources are

more abundant. Gaining weight, like receiving transfers, has a cumulative

e¤ect, but compounding of growth applies to the cost side whereas the com-

pounding of transfers applies to the bene�t side. Of course, if the juvenile

simply cannot forage or hunt (with �a = 0 8a � r), then the compounding
e¤ect of growth disappears.for the ages in question. In this case, however, the

juvenile must be receiving transfers of energy from adults, so that declining

mortality is assured through the Transfer e¤ect. One or the other or both

must be present.

We can view the process of gaining weight as a production process, trans-

forming energy into tissue and �esh, with an e¢ ciency that may vary with

age. The energy cost of achieving a given weight gain per unit time might

at �rst be high, since the organism is initially small, so the proportional in-

crease would be great. When it becomes larger, the proportional increase is

smaller, and therefore might be achieved more e¢ ciently. But as the indi-

vidual approaches its mature size, adding weight might again become more

costly. Such considerations suggest an S-shaped pattern for weight-gaining

e¢ ciency. However, since the correspondence between age, size and maturity

is not known until the optimization problem is solved, it is not appropriate

to posit any nonmonotonic age variations in any of the parameters. For this

reason we will not consider variation in dk as an in�uence on the age pattern
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of juvenile mortality.

Likewise, it is di¢ cult to draw any conclusions about the age pattern of

the e¢ ciency of allocations to maintenance and survival, bk. Body size will

grow with age until age r, but r is not known until the optimization is solved.

Larger body sizes may have lower costs of avoiding predation, but larger

maintenance costs due to the increased number of cells and cell replications.

3.4 The Forces Shaping Juvenile Mortality

Now let us pause to take stock and interpret what we have learned. We have

identi�ed four forces that in�uence the shape of pk for immature ages.

1. The Hamilton E¤ect: the term M representing expected future repro-

duction conditional on reaching maturity, which is independent of k

and so does not a¤ect the shape of juvenile mortality.

2. The Transfer E¤ect:
Py

j=r+1
pj
cj

h
�yg1(R1j)

p1���pr + � � �+ �y�k+1gk(Rkj)
pk���pr

i
, which is

increasing in k, and therefore provides a reason to expect that juvenile

mortality will decline with age, in species with parental care or other

intergenerational transfers.

3. The Compounded E¤ect of Growth: 1=
�
1+

�k+1
dk+1

�
� � �
�
1+ �r

dr

�
� 1=Kk,

which is increasing in k, and leads us to expect declining juvenile mor-

tality whether or not species have parental care and intergenerational

transfers.

4. Unknown variations with age of the energetic costs of growth and/or

survival. However, there seems no clear reason to expect these to vary

in one way or another, so we set them aside.

Now we will consider these results in relation to the literature. The �rst

e¤ect was emphasized by Hamilton (1966) as discussed earlier. The second
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e¤ect was emphasized by Lee (2003), but it also corresponds partially to the

"sibling replacement e¤ect" discussed informally by Hamilton (p.40). The

third e¤ect we believe is new, and important. Others have linked mortality

risks to size, and therefore found that mortality declines with growth, but

our argument is more subtle. The e¤ects considered fourth are unknown,

but unless powerful, would be overwhelmed by the others. Under a di¤er-

ent setting, Robson and Kaplan (2003) also derived a declining mortality

schedule in young ages for species having a "learning-by-doing" property

in their age-speci�c production pro�le. Speci�cally, they assumed that the

age-output pro�le is hump-shaped (assumption 5), which in turn implies

an energy de�cit during childhood and old age, and an energy surplus dur-

ing middle ages. The corresponding Fisher�s reproductive value is therefore

hump-shaped. This facilitates the U-shape mortality, for an optimal life his-

tory must secure high reproductive value through low mortality. The model

they presented, however, does not have an explicit biological immature pe-

riod prior to reproduction, and hence cannot be compared with the Hamilton

result directly.8 Our results, evidently, do not depend on any assumptions

about a hump-shape for age-speci�c output (�awa). For instance, it may be

the case that the species in question is not productive at all in immature ages

so that �a = 0 8a � r. Even in this case, we are able to generate a declin-
ing age-speci�c mortality result as long as the juveniles receive a su¢ cient

amount of transfers.
8For the case of primates and human beings in particular, Robson and Kaplan (p. 160)

did assume a pattern of neural capital accumulation similar to the scenario of determinate

growth.
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4 Mature Mortality Trajectories

Now we consider the pk trajectory for mature (adult) ages k � r + 1. Using
identity (8), we see that the �rst order condition for maximizing (9), after

factoring out a constant, is the following:

�pk =Mk +

yX
j=k+1

lj�
y�j+1Tj=cj �

bk
ck
�y�k+1lkpk = 0; (12)

where

Mk �
yX
j=k

lj�
y�j+1mj

is the weighted future fertility e¤ect after age k, similar to the Hamilton

e¤ect M in (10) but varying with k, and Tj is the transfer made at age j.

The two summation terms start at di¤erent ages (j = k or j = k+1) because

we assume fertility is realized toward the end of each period, while transfers

are realized at the beginning of each period. Once having reached age k,

only later ages (j greater than k) can possibly contribute to the bene�t of

surviving past age k, hence the summations in (12) start at j = k. All these

future fertility and transfer e¤ects have to be added up as we consider the

bene�t of a change in pk.

4.1 The Forces Shaping Adult Mortality

Again we will pause to consider the forces at work, which are closely related

to those for juvenile mortality, but with quite di¤erent implications. The

�rst two are �tness bene�ts of increased survival, whereas the third is the

cost of increasing survival.

1. The Hamilton E¤ect: the termM evaluates expected future net fertility

conditional on reaching maturity. But unlike for juveniles, here M

necessarily declines monitonically toward 0 as age increases, indicating

that it is progressively less bene�cial to allocate resources to survival.
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2. The Transfer E¤ect: the total expected transfers (survival weighted

and discounted by population growth) that remain after age k, which

necessarily declines monotonically toward 0 as age increases, provided

that adults are not net receivers of transfers at any age. Note that this

may remain positive after cessation of reproduction, providing contin-

uing bene�ts to postreproductive survival. It is divided by the cost of

fertility at each age to convert the energy involved in the transfers into

units of fertility.

3. The Fertility Cost of Increasing Survival: The energy tradeo¤ is bk=ck,

which is survival weighted and discounted.

4. Unknown variations with age of the energetic costs of survival relative

to fertility, bk=ck. There is no clear reason to expect this ratio to vary

in one way or another. Unless very large, such variations would be

overwhelmed by the other factors.

The sum of the �rst and second terms is the total future bene�t which an

individual protects by sustaining survival. The third term is the opportunity

cost of pk. As one can see from (5), increasing pk can be achieved only by

reducing mk. The term bk�
y�k+1=ck characterizes the costs of pk relative to

mk, which is multilied by pk because fertility is realized toward the end of

the age interval k after survival. The cost term is multiplied by p1 � � � pk � lk
because we have done so for terms associated with the bene�t part. Note that

the cost term is also decreasing in k, partly o¤setting the declining pattern

of the bene�t side.

18



4.2 Optimal Adult Mortality

Equating �pk in (12) to zero, we derive the following characterization of

pkwhich is not a reduced form, but which is nonetheless helpful.

p�k =

hPy
j=k ljmj�

y�j+1 +
Py

j=k ljTj�
y�j+1=cj

i
=lk

bk=ck
; (13)

As explained, the �rst term in the square parentheses is the Hamilton e¤ect,

and the second term the transfer e¤ect, and both decrease with age, k. The

di¢ culty in drawing a �rm conclusion about whether survival falls with age

and mortality rises, is that lk divides the square brackets, and it is decreasing

in k. Optimization at each age is forward looking, and conditional on survival

to that age, which is why lk appears in (13). We will now consider whether

the Hamilton and transfer e¤ects are declining faster or slower with age than

lk.

We know from (5) that mj + Tj=cj = (�jwr+1 � bjpj)=cj; so (13) can be
written as

p�k =

hPy
j=k lkj�

y�j+1(�jwr+1 � bjpj)=cj
i

bk=ck
; (14)

where lkj = pk+1 � � � pj. Note that the dynamic programming problem in (2)

for mature ages can be written explicitly as

max

r+1

h
pr+1mr+1�

t�r�1+max

r+2

�
pr+2mr+2�

t�r�2+ � � �+max

y
(pymy�

t�y)
�i
: (15)

The set 
k for mature ages in the above problem is characterized by

bkpk + ckmk � �kwr+1 � Tk: (16)

As one can see, the numerator on the right hand side of (14) is in fact the

maximum value obtained from the remaining optimization problem in (15)

starting from any age k, which we denote B(k). We shall argue below that

B(k) is decreasing in k.
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We note from (15) that the k-forward problem is symmetric for each k

except: 1) the terms to be added in the maximand decrease when k increases,

and 2) the feasible set 
k may be di¤erent across k. The �rst factor certainly

causes the maximum value of the k-forward problem to decline as k increases.

Thus, we can conclude that the numerator of (14), B(k), is decreasing in k,

provided that the feasible set 
k does not increase as k increases. This

condition is met if either the �kwr+1 � Tk is not increasing,9 or the cost
of maintaining survival and reproducing (bk; ck) is not decreasing, or both.

There are various reasons to expect bk; ck to increase in k: wear and tear

on the organism as it ages, the accumulation of somatic mutations with age,

and the accumulation of mutations in the germ line that lead to less e¢ cient

physiology in old age. What is not known is the pattern of �kwr+1 � Tk.
There are two interesting cases we can consider for the shape of �kwr+1�

Tk. First, suppose there are no transfers, or transfers are small in the relevant

range of k. Then �kwr+1 � Tk � �kwr+1. Second, since we do not have any
a priori information concerning Tk, we may assume that the age-k transfer

is a �xed proportion of age-k energy: Tk = �kwr+1, where  is a constant.

In this scenario, �kwr+1 � Tk = (1 � )�kwr+1. In either case, a su¢ cient
condition for the feasible set to be non-expanding is that �k is not-increasing

in k, which also seems reasonable for old ages for the same reasons given for

non-decreasing bk; ck. In sum, in either of the above two cases, as long as the

e¢ ciency of energy production through foraging �k does not increase with

age, and neither does the e¢ ciency of achieving survival or fertility through

expenditure of energy (which is inversely related to bk; ck), we know that

B(k), and hence the numerator of (14), should be decreasing in k. Thus,

unless the ratio bk=ck in the denominator decreases more rapidly than the

numerator, due to a more rapid decline in the energy e¢ ciency of fertility

9In Vaupel et al. (2004), they have indeterminate growth, so that wk may increase even

after maturity. This will expand the feasible set 
k, and hence �negative senescence".
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than of survival, we can conclude that pk.decreases with age, and therefore

that mortality is rising with age We have no reason to expect any particular

trend in the ratio bk=ck, let alone a strong one.

For general transfer patterns, the budget constraint in (16) is bkpk +

ckmk � �kwr+1�Tk: A su¢ cient condition to tell the shape of the numerator
of (14) is a non-increasing pattern for (�kwr+1�Tk)=ck. However, one should
note that this condition is far stronger than what is needed to have the

numerator of (14) decline as k increases, even if (�kwr+1 � Tk)=ck increases,
the e¤ect of decreasing number of terms has to be o¤set for the maximum

value to be increasing.

4.3 The Transition from Juvenile to Mature

Now we brie�y discuss the intersection age where maturity and immaturity

meet. We argued in section 2 that the species in question will never choose

ma > 0 and za > 0 at the same time. This can be seen as follows. Applying

the envelope theorem to (2), we see that in a steady state

V 0a;t = p
�
af�a�t�1=ca + p�a+1[�a+1�t�2=ca+1 + p�a+2(�a+2�t�3=ca+2 + :::]g:

For the age-a problem, concerning the trade-o¤ between ma and za, we have

the following �rst order condition (in terms of economics, MRS equals price

ratio) for an interior solution:

�t�1

p�a+1f�a+1�t�2=ca+1 + p�a+2[�a+2�t�3=ca+2 + p�a+3(�a+3�t�4=ca+3 + :::)]g
� MRSa =

ca
da
: (17)

We see that both sides of (17) are not dependent on any age-a choice variable.

Thus, expression (17) could hold only by accident in a steady state, which in

turn implies that ma and za cannot be interior solutions at the same time.
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If ages are re�ned to very small intervals, then around the borderline

where the immature and mature is divided, the parameters ca, da and �a do

not di¤er much for close enough a�s. Applying (17), one can see that the

survival probabilities for age r and r + 1 are connected. The shape of pa for

mature and immature ages are respectively dominated by the formula in (11)

and (13).

5 Conclusions

The characteristic U-shape of mortality for many species invites explana-

tion. First, why does mortality decline at the start of life? Second, why does

mortality rise in adulthood? Third, why is there postreproductive survival?

Hamilton (1966) provided an answer to the second question, now understood

to be based on the evolutionary genetic mechanism of mutation accumulation.

However, his approach failed to explain either declining juvenile mortality or

postreproductive survival, and it did not apply to species that make inter-

generational transfers (Lee, 2003). Even his apparently de�nitive answer to

the second question has been shown to fail to hold when the theoretical ap-

proach is optimization of the life history, and the dominant genetic process is

assumed to be positive selection of bene�cial mutations (Vaupel et al, 2004).

The optimal life history for species with indeterminate growth can include

declining adult mortality.

We have limited our analysis to the case of determinate growth, which

arises naturally from our assumed linear energy constraint. We have also fo-

cused on the shape of the optimal life history, while ignoring the in�uence of

accumulated deleterious mutations, although this could be readily included,

leading to systematic departures of the evolved life history from its optimal

shape, causing the optimal adult mortality to rise more rapidly. At the same

time we have broadened our analysis to include physiological tradeo¤s, a ne-
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cessity for the optimality approach, and to allow intergenerational transfers,

which has not previously done in the optimality literature except in Chu and

Lee (2005). Our dynamic optimization approach also di¤ers from the previ-

ous literature by starting from the primal objective of maximizing the genetic

representation at a future date, from which we derive the intrinsic growth rate

(Euler-Lotka parameter) as the appropriate meaure of �tness. Elsewhere we

have shown that the common procedure of taking expected births (the Net

Reproduction Ratio) as the �tness goal yields incorrect comparative static

results (Chien et al, 2005).

Given this setup, we have derived a number of important new results.for

the optimal shape of mortality for species with deterministic growth, and with

or without intergenerational transfers. We have shown that juvenile mortality

must decline from birth to maturity, due either to protection of increasing

cumulative investments in juveniles (as Lee, 2003, found in the mutation

accumulation context) or to the advantages of early investment in growth at

the expense of survival, due to compounding e¤ects, or to both. At least one

of the two e¤ects must be operative at any age, so juvenile mortality decline

is assured. For adult mortality, we have shown that it must increase steadily

following maturity in species without transfers or with small transfers, due to

a weakened version of the Hamilton e¤ect�weakened in the sense that in the

optimal history, the decline in remaining expected fertility after a given age

is partially o¤set by the decline in proportions surviving to that age, which is

not the case for the accumulation of deleterious mutations. When a species

makes intergenerational transfers, then there is postreproductive survival.

Here also declining future transfers tends to make adult mortality rise, but

again this e¤ect is weakened by the decline in proportions surviving to any

given age. Although we think declining adult mortality in the case with large

transfers is unlikely, a de�nite conclusion of such cannot be reached due to

the decreasing probability of surviving to older ages.
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In sum, we have shown how changes in remaining fertility and cumulated

transfers operate di¤erently in the optimization context to shape mortality

patterns, we have seen how physiological tradeo¤ costs qualify these e¤ects,

and we have identi�ed a new force, the compounding power of growth. We

conclude that these forces combine to produce a U-shaped mortality pattern,

although the possibility of declining adult mortality in some circumstances

cannot be ruled out due to the declining probability of surviving to any age.
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Appendix: Interpreting Equation (2)

The interpretation of equation (2) is as follows: p1m1 in the �rst term on

the right hand side of (2) characterizes the event that an age-1 individual

survives (with probability p1) and bears m1 o¤spring. Since each of these

o¤spring is valued V1;t�1 in period t� 1 (because the o¤spring is one period
closer to �), V1;t�1 should be multiplied by p1m1 to obtain the expected value.

The V2;t�1 in the second term of (2) is the value function of this individual at

age-2. With probability p1 the individual will survive to face this state, and

so V2;t�1 should be multiplied by probability p1. The age-2 body size should

be w2 = w1 + z1 instead of w1. The interpretations of other expressions are

similar, so we move forward to the last equation. For an individual aged y

in period t, py and my are chosen to maximize the expected value of the last

birth. At age y, there is no gain from further growth.10 This generates the

age-y expected value pymyV1;t�1. Since y is the last fertile age by assumption,

there is no second term for the last equation.

10The growth of a post-reproductive individual might still be valuable if she could trans-

fer some wealth to her young o¤spring, but for the time being we are considering the case

in which this is not possible, re�ected in the budget constraint in equation (1). See also

Lee (2003).
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