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Death rates cannot be measured reliably at old ages, yet their values are necessary in 

studies such as population forecasts. In estimating the true values of death rates at old 

ages, general smoothing techniques cannot apply to extremely old ages at which there 

are too few survivors, and they also involve arbitrary choice between smoothness and 

fitting. To avoid the arbitrariness, we call for the Lee-Carter method that is designed to 

distinguish persistent trends and disturbances in mortality change. To extend estimates to 

any age, we utilize the heterogeneity-mortality model. Composing cohorts born in long 

periods, we obtain the robust estimate of heterogeneity variance, and subsequently the 

targets are extended from mortality curves to surfaces. Identifying the baseline mortality 

surface, we eliminate disturbances using the Lee-Carter method and derive estimates of 

the true values of cohort mortality. We provide examples using data from 17 low-

mortality countries. 

 

 How mortality changes across age is perhaps the oldest issue in demography. 

Ideally, this issue should be approached on the basis of observation. Mortality studies 

have been progressing closely along this line, especially in recent decades when data 

collection improved remarkably. However, no matter how much efforts were paid on 

collecting data, they could reliably measure mortality only up to some age, older than 

which there are severe disturbances that include random fluctuation and binomial noise 
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due to too few survivors. In this paper, we propose a method to estimate mortality at old 

ages at which direct measure cannot be reliable. Why do we need to know mortality at so 

old ages? Among other reasons, population forecasts provides perhaps the most obvious 

one: Survivors at old ages are increasing fast in the course of mortality decline. Therefore 

forecasting the number of nonagenarians or centenarians is becoming increasingly 

necessary. Such forecasts, obviously, cannot be done without knowing mortality at ages 

older than 90 or 100 years.    

 

   In estimating the true values of mortality, which we refer to observed death rates 

in the absence of disturbance, smoothing techniques based on spline functions (see 

Direckx, 1993) cannot apply to extremely old ages at which there are too few survivors; 

we therefore turn to demographic models. Using the values of death rate at younger ages 

measured under slight disturbance, parameters of the models can be calculated, and then 

the values of death rate at older ages can be estimated. This strategy was adopted to 

extend the maximum age for both model life tables (Caole and Guo, 1990) and observed 

death rates (Lee and Carter, 1992).  

 

 

The model  

 

In describing mortality changes at ages older than 85 years, the Coale-Kisker 

(1990) and Kannisto (Thatcher, Kannisto and Vaupel, 1998) models are perhaps the 

easiest to use. The Coale-Kisker model assumes a quadratic function for the logged death 

rate, while the Kannisto model recommends a logistic curve. If the modeling errors were 

identically and independently distributed across age, parameters could be well estimated 

using observed data. Unfortunately, the variance of the binomial noises rise with age; and 

random fluctuations are always correlated across age. Since direct estimate is difficult, 

the Coale-Kisker model set 0.8 for male and 1 for female death rate at age 110, and the 

Kannisto model assumes 1 as the ultimate level, both arbitrarily. 
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Similar to the findings of leveling-off mortality among other species (Vaupel, et 

al, 1998), human mortality plateau has been revealed recently (Robine et al, 2005). 

Specifically, human death rate is observed to level off at about 0.65 for males and 0.75 

for females at ages around 115 years. This finding disfavors the Coale-Kisker model in 

which death rate declines after reaching some maximum level, and suggests substantially 

reduce the assumed leveling-off value in the Kannisto model. 

 

Given that mortality should gradually level off, there are still countless paths that 

could lead to the plateau. For example, the arctangent curve (Lynch and Brown, 2001) 

may also be a candidate besides logistic. Thus, what path should the death rate follow is 

still a question. And this question is perhaps more important than that of the leveling-off 

value, because there are more survivors on the slope than on the plateau. Yet this 

question cannot be properly answered by inductive methods, which recommend 

particular curves by comparing fittings of limit data. A specific curve may fit a certain set 

of data best among a certain group of curves. But no matter how large the set and how 

representative the group may be, this specific curve cannot be guaranteed the best either 

in fitting other data or when more curves are considered.     

    

 The mortality-heterogeneity model (Vaupel, Manton and Stallard, 1979, 

henceforth VMS) answers this question on a deductive basis. Admitting that individuals 

are different with respect to mortality even if they share the same status such as age and 

gender, the fact that weaker people tends to die earlier provides the deductive basis of the 

VMS model. On this basis, the rate of mortality increase with age should decline at 

advanced ages, because individuals are more robust there. This basis, on the other hand, 

prefers cohort data to that of period. The VMS model was criticized for arbitrarily 

assuming the baseline mortality and distribution of heterogeneity (e.g., Trussell and 

Rodríguze, 1992). The situation is improved in the extension of the VMS model (Li and 

Vaupel, 2005), in which the baseline mortality is speculated to rise exponentially 

according to the Gompertz (1825) law, and the heterogeneity distribution is specified as 

gamma according to the observed mortality plateau. Standing on qualitative observations 

of the Gompertz law and mortality plateau, the VMS model deduces that a cohort’s death 
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rate should follow a logistic curve. Different also quantitatively from the Kannisto model 

that approaches 1; the logistic curve should level off at about 0.65 for males and 0.75 for 

females, the values of observed human mortality plateau. Although the level of mortality 

plateau may vary among populations, taking the only observed values would be better 

than making other assumptions arbitrarily. 

 

Choosing the VMS model, severe disturbance will still cause problem in 

estimating death rates for cohorts born in single year. We solve this problem through two 

steps. First, we compose cohorts born in long periods to obtain the robust estimate of 

heterogeneity variance, which could be argued to be more constant than the death rate 

itself that apparently declines over time. Using the robust estimate of heterogeneity 

variance, we identify the baseline mortality surface on which the effects of disturbance do 

not cumulate over age. In the second step, we apply the Lee-Carter method (Lee and 

Carter, 1992, henceforth the LC) as a filter to smooth the baseline mortality surface. 

Using the robust estimate of heterogeneity variance and the smooth baseline mortality 

surface, the true values of cohort mortality can be estimated by the VMS model.   

 

 

The relevant features of the VMS model 

 

For a cohort at age x, denote its force of mortality by )(xµ , and its baseline force 

of mortality by )(xoµ , which represents the force of mortality of individuals whose 

values of z is 1. Then, )(xµ  can be expressed by )(xoµ  as     
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where σ2 is the variance of heterogeneity at age 85, the starting age of the VMS in this 

paper. We choose such a starting age is because younger than which the Gompertz law 
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may work well. In measuring mortality, life expectancy removes effects from age 

structure, and hence is better than crude death rate. Similarly, owing to eliminating 

mortality heterogeneity among individuals, )(xoµ  measures mortality at a more 

fundamental level than )(xµ , and hence should suffer less disturbance than )(xµ . To 

illustrate this, suppose there is no disturbance at age x; but at a younger age y, )(yoµ is 

raised up by a disturbance. Then, according to (1), )(xµ would be smaller than that of no 

disturbance on )(yoµ , because the integral in the denominator of (1) continues the 

disturbance to older ages. This can be explained as that some individuals would normally 

die at age x died earlier at age y. In other words, )(xµ could be disturbed even if there is 

no disturbance on )(xoµ . Of course, using )(xz oµ  to express individual mortality is a 

simplification, which implies that when there is a disturbance at age x for individuals 

with z=1, there will also be disturbance for other individuals with strength proportional to 

their z. In other words, disturbances are perfectly correlated across individuals at the 

same age.     

 

The VMS model can also to describe )(xoµ by )(xµ as 
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In (2), s(x) is the cohort’s survival probability from age 85 to x. Since disturbance is 

smoothed in s(x) over age, (2) also indicates that )(xoµ  is less disturbed than is )(xµ , 

consistent with (1). Furthermore, if the value of σ is estimated, )(xoµ  can be identified 

by (2) using the observed values of )(xµ . 

 

 

Estimating σ for cohorts born in long period 
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In reality what can be measured is the death rate that can be regarded as the over-

age average of the force of mortality in an age group. Therefore we will not distinguish 

death rate and the force of mortality, and accordingly will use discrete expression. In the 

extension of the VMS model, )(xoµ is speculated to follow the Gompertz law, 

 

)]85(exp[)85()( −= xrxo µµ .      (3) 

Inserting (3) into (1), )(xµ is a logistic curve, 
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and the ultimate level of mortality is 
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In principle, parameters r and σ could be estimated from minimizing errors of using (4) to 

describe the observed values of )(xµ . In practice, however, even for cohorts born in long 

period such estimates may not yield )(∞µ  that is close to the observed mortality plateau 

because of disturbance. To avoid strong disturbances, parameter estimating should 

exclude the values of )(xµ at ages older than some threshold, namely w. On the other 

hand, the observed values of mortality plateau, which we denote as )(~ ∞µ , should be 

utilized. We therefore introduce the below constraint according to (5) 

 

2)(~ σµ ∞=r  .       (6) 

 

Inserting (6) into (4), σ can be estimated from the below nonlinear least squares, 
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We apply this estimate to cohorts born in long periods, because increasing cohort size 

reduces binomial noises, and because over-time averaging eliminates random 

fluctuations. The performance of this estimate can be evaluated by the average-relative 

error 
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Estimating mortality for cohorts born in single year  

    

We now denote by ),( cxµ  the force of mortality at age x for cohort born in single 

year c, and by ),( cxoµ  the baseline force of mortality of individuals in this cohort. 

Because the σ2 describes the variance of heterogeneity with respect to mortality, it should 

not change significantly over cohort born in single year when the society is in stable state. 

This is different with situation that death rate should decline stably when the society is in 

stable state. We therefore assume that the value of σ2 does not change over cohort. Under 

this assumption, the value of σ2 can be robustly estimated from the largest cohort whose 

members are born in all the single years.  

  

Using the robust estimate σ2, the ),( cxoµ is identified by (2). We now turn to 

eliminate disturbances, because their effects do not cumulate over age in ),( cxoµ . Using 

general smoothing techniques, however, arbitrary choice between smoothness and fitting 

(see Direckx,1993) is inevitable. Because now the concern is not general but mortality, 

one may naturally recall the LC, which first eliminates binomial noise by averaging and 
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then distinguishes historical mortality trends from random fluctuations. Although the LC 

was originally proposed for period data, it applies also to that of cohort as can be seen 

next.  

 

In the cohort version of the LC, the over-cohort average of )],(log[ cxoµ , a(x), is 

calculated first, in which the binomial noises are largely eliminated. The difference 

between )],(log[ cxoµ  and a(x) contains therefore mainly persistent trends and random 

fluctuations, and is modeled as    

 

),()()()()],(log[ cxckxbxacxo εµ ++= .   (9) 

 

Equation (9) transfers the task of modeling an age-specific vector )],(log[ cxoµ  into 

modeling a scalar k(c), when the average-relative error 
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is small and therefore ),( cxε is negligible. Subsequently the task of identifying a large 

number of persistent trends in ),( cxoµ is transferred into identifying only one persistent 

trend in k(c).  

 

 For forecasts including uncertainty, time-series models are the natural tools to 

deal with k(c). And in the LC a random walk with drift (RWD) is usually the model. In 

order to smooth out random fluctuations in k(c), we also need time-series models, 

because the k(c)s are correlated and in time-series models the modeling errors are 

independent.  

 

To remove random fluctuations from k(c), however, the situation is different from 

forecasting. On the one hand, mistaking persistent trend as random fluctuation introduces 
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additional modeling error, which cannot be attributed into forecasting uncertainty. 

Therefore, better fitting is more important than in the case of forecasting. On the other 

hand, behaving reasonable in long term is not the concern of selecting model, therefore 

models more general than RWD could be chosen. For these reasons, we use a random 

walk with cohort-varying drift (RWVD) model, which is written as 

 

)()1()( 10 cecddckck +++−= .   (11) 

 

When the cohort-varying coefficient d1 is estimated as or close to 0, (11) reduces to 

RWD. Because e(c) is deemed as random fluctuation, which will be eliminated, we do 

not measure it as modeling error in the way of (8) or (10). Since e(c)s can be assumed as 

independently and identically distributed (i.i.d.) variables without resulting in k(c)s to be 

independent, the coefficients in (11) can be estimated using OLS (see Kendall and Ord, 

1990) as 
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The persistent trend in k(c), which we denote as K(c), is then identified as the difference 

between k(c) and e(c). Using the estimated of parameters in (12) and an initial value 

K(0), K(c) is obtained according to (11) as: 
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The value of K(0) may differ from k(0) that includes disturbance e(0), and can be 

determined by minimizing the removed disturbances as 
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 Using K(c), the persistent trends in the baseline mortality surface are obtained as 

 

).()()()),(log( cKxbxacxf +=µ    (15) 

 

We call (9)—(15) the LC filter that specifies the persistent trends )),(log( cxfµ  in the 

baseline mortality surface )),(log( cxoµ . We might take ),( cxfµ  as non-parametric 

smooth values of ),( cxoµ to estimate the true values of ),( cxµ . But by doing so we can 

only obtain the true values of ),( cxµ  for x≤w. In order to estimate ),( cxµ at any age, we 

further derive the smooth estimates of r(c), which is the r in (3), using ),( cxfµ : 
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The performance of (3) can also be evaluated by the average-relative error 
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Consequently, the true values of ),( cxoµ and ),( cxµ  are estimated according to (3) and 

(1) as 
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Examples and discussion 

 

We use Human Mortality Database (www.mortality.org) to illustrate our method. 

The data include male and female populations and death rates, specified in single year of 

age from 0 to 109 years, and in single year of time. To avoid the impact of World War II, 

we choose the starting year as 1950 or the earliest available later than 1950. We also limit 

our application to countries whose mortality declined stably and data are believed 

reliable. These countries are: Austria, Belgium, Canada, Denmark, England and Wales, 

Finland, France, the former West Germany, Italy, Japan, the Netherlands, Norway, Spain, 

Sweden, Switzerland, and the US.  

 

Following Thatcher, Kannisto and Vaupel (1998), we set the maximum age of 

estimating the model, w, as 98. This is because centenarians are scarce and at age 99 

misreporting errors are usually high. We then construct the largest cohort, which is 

composed by individuals who survived to age 98 at and before the latest year and who 

reached age 85 at and after the earliest year, at which the data are available. Taking 

Austria with data available between 1950 and 1999 as example, the largest cohort 

includes individuals who reached age 85 from1950 through 1986. The numbers of 

population in the largest cohorts at age 85 are listed in the second column for each 

country in Tables 1 and 2.      

 

We apply the constraint of leveling off, )(~ ∞µ , as 0.65 for males and 0.75 for 

females for each country. The values of the average-relative error, the E(VMS) in (8), are 

listed in the third column in Tables 1 and 2. Among all countries and for both sexes, the 

maximum E(VMS) is 1.4%, which is expectantly observed from Finland males that 

numbered the second smallest. And the value of Eσ is larger for males than females for 
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each country expect for Japan and Spain, whose males’ Eσ is marginally smaller than that 

of females’. These indicate that larger Eσ correspond to smaller populations, and that the 

logistic curve fits observed data well for both sexes in all the 17 countries. The observed 

and estimate values of )(xµ  for Finland males are shown in the first panel of figure 1.  

 

The estimate values of σ2 are larger for males than for females for each country, as 

can be seen in the seventh column in tables 1 and 2.  For males, the values of σ2 are 

estimated in the range of 0.1645 to 0.2185, with mean 0.1958 and standard deviation 

0.0176. For females, the range, mean and standard deviation of σ2 are 0.1342 to 0.1717, 

0.1532 and 0.0106, respectively.    

 

Having the estimate value of σ, the ),( cxoµ is identified by (2), which is shown by 

the triangles in the second panel of figure 1, taking the first cohort of Finland males as 

example. Applying the LC to the identified surface of ),( cxoµ , the average-relative errors 

E(LC) are listed in the fifth column in tables 1 and 2. For all the 17 countries and for both 

sexes, the maximum Elc is 0.7%, implying that the LC worked well for cohort data. On 

this basis, we transfer the changes in a vector ),( cxoµ into that of a scalar k(c), which is 

shown by the triangles in third panel of figure 1. Applying the RWVD model, the 

persistent trend in this scalar k(c) is identified as the solid curve in third panel of figure 1.   

 

Using the persistent-trend k(c) and (15), ),( cxoµ is filtered as ),( cxfµ at ages 

younger than 99. The values of ),85( coµ and ),85( cfµ are displayed in the fifth panel of 

figure 1. Applying (16) to ),( cxfµ , the smooth values of r(c) are estimated, as is depicted 

in the fourth panel of figure 1.  The maximum average-relative error in estimating the 

smooth r(c), E(G), is 1.1% among all the 17 countries and for both sexes, as can be seen 

in the sixth column in tables 1 and 2. Using ),85( cfµ , the smooth estimates of r(c), and 

(18), the ),( cxoµ is estimated for ages older than 98, and the values of )1,(xoµ  are shown 

as the solid curve in the second panel of figure 1. Because the heterogeneity model is 

deductive, we believe its good performances at ages younger than 98 years indicate 
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accurate estimates at older ages. Using (19), we obtain the estimates of cohort mortality 

surface ),( cxµ .  

 

Models (3) and (1) can be extended to any age. The leveling-off value, r(c)/σ2, 

however, is no longer constant but changes over cohort closely around the 

constraint )(~ ∞µ . Taking the smooth values of r(c) for the first and last cohort in the 

fourth panel of figure 1 as example, the leveling-off values for cohorts reached age 85 

between 1950 and 1989 reduced smoothly from 0.7008 to 0.6210. The leveling-off value 

will also change over country and sex, but should not differ too much from )(~ ∞µ  either. 

Because observed cohort death rate stops at age 109, we compare the observed and 

estimate values of ),( cxµ  up to age 109, in figure 2 for Finland males, and in figure 3 for 

the US females that numbered the largest among the 17 countries. The first panels of 

figures 2 and 3 show the observed and estimated mortality surfaces; the second panels 

provide projections of the surfaces along the time dimension; and the third panels display 

the over-cohort average death rates.     

 

Utilizing the LC method that is designed to identify persistent trends from 

disturbances in mortality change, we estimate the true values of ),( cxoµ for x between 85 

and 98 years. Using the VMS model, which is deductive and hence could be regarded 

accurate according to its good performance at younger ages, we extend estimates to ages 

older than 98 years. Our estimates depend also on the constraints )(~ ∞µ , which are 

observed from the large cohorts that were born in long periods in more than 15 low-

mortality countries (Robine, et al, 2005). Viewing a cohort born in a specific country and 

a single year as a random sample from this large cohort, the estimate ),( cxµ should be 

asymptotically unbiased around its empirical average )(~ ∞µ . Our estimates are therefore 

demographically empirical and asymptotically unbiased. This unbiasedness implies that 

when the population is larger the difference between the estimate and observation would 

be smaller, and could be illustrated presently by figures 2 and 3. The differences between 

the estimates and observations are enormous for Finland and negligible for the US; while 

the population is small in the former and large in the latter.              
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Table 1. Results of models of cohort and individual mortality for males 

 Years in which 

data are 

available 

Population of 

the largest 

cohort at age 

85 (x1000) 

E(VMS) E(LC) E(G) σ2 

Austria 1950—1999        134 0.0083 0.0033 0.0038 0.2125 

Belgium 1950—2002        229 0.0055 0.0034 0.0039 0.1996 

Canada 1950—1996        317 0.0067 0.0021 0.0027 0.1804 

Denmark       1950—2002        129 0.0102 0.0039 0.0048 0.2185 

England        1950—1998        864 0.0063 0.0017 0.0022 0.1892 

Finland 1950—2002          54 0.0141 0.0066 0.0105 0.2029 

France            1950—2002      1,119 0.0038 0.0017 0.0020 0.1834 

Germany(W) 1956—1999        946 0.0048 0.0019 0.0022 0.1921 

Italy               1950—2001      1,023 0.0042 0.0018 0.0021 0.1893 

Japan            1950—1999        946 0.0039 0.0024 0.0027 0.1645 

Netherlands  1950—2003        292 0.0106 0.0026 0.0046 0.2141 

New Zealand 1950—2003          51 0.0131 0.0057 0.0063 0.1901 

Norway        1950—2002        111 0.0056 0.0026 0.0030 0.2180 

Spain 1950—2002        566 0.0059 0.0029 0.0037 0.1730 

Sweden          1950—2003        249 0.0083 0.0024 0.0030 0.2174 

Switzerland   1950—2003        133 0.0073 0.0034 0.0038 0.2054 

USA             1959—1999     3,083 0.0063 0.0014 0.0020 0.1686 
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Table 2. Results of models of cohort and individual mortality for females 

 Years in which 

data are 

available 

Population of 

the largest 

cohort at age 

85 (x1000) 

E(VMS) E(LC) E(G) σ2 

Austria 1950—1999        297  0.0031 0.0024 0.0027 0.1609 

Belgium 1950—2002        434 0.0028 0.0022 0.0024 0.1500 

Canada 1950—1996        471 0.0038 0.0022 0.0025 0.1432 

Denmark       1950—2002        206 0.0046 0.0029 0.0033 0.1674 

England        1950—1998     2,121 0.0034 0.0013 0.0016 0.1467 

Finland 1950—2002        135 0.0050 0.0049 0.0054 0.1493 

France            1950—2002     2,683 0.0021 0.0013 0.0014 0.1520 

Germany(W) 1956—1999     1,977 0.0024 0.0019 0.0021 0.1511 

Italy               1950—2001     1,837   0.0022 0.0016 0.0017 0.1473 

Japan            1950—1999     1,836 0.0040 0.0016 0.0017 0.1342 

Netherlands  1950—2003        472 0.0082 0.0030 0.0045 0.1717 

New Zealand 1950—2003          93 0.0056 0.0035 0.0032 0.1495 

Norway        1950—2002        182 0.0048 0.0025 0.0027 0.1689 

Spain 1950—2002        115 0.0061 0.0022 0.0032 0.1460 

Sweden          1950—2003        401 0.0070 0.0020 0.0025 0.1621 

Switzerland   1950—2003        266 0.0050 0.0027 0.0030 0.1640 

USA             1959—1999     5,880 0.0051 0.0018 0.0023 0.1448 
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