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1. Introduction

In this paper, we suggest that the theoretical apparatus of mathematical epidemiology
provides a fundamental set of tools for understanding the relationship between social and
environmental change and disease emergence. These relationships are manifold and
extraordinarily complex (Institute of Medicine 2003). However, by focusing attention on the
proximate mechanisms of emergence, the theory of mathematical epidemiology can be used
to organize and simplify the many potential pathways to emergence and let us understand
how population phenomena such as growth, compositional change, consumer preferences,
population movements, etc. can affect disease emergence.

One of the fundamental quantities of interest in mathematical epidemiology and theoretical
ecology is the basic reproduction number, R . The basic reproduction number is defined as

the expected number of secondary cases produced by a single (typical) disease infection in
a completely susceptible population in the absence of infection control measures. In

addition to its intuitive meaning as a reproduction number (directly analogous to the R,
familiar to demographers (Heesterbeek 2002)), R acts as a threshold parameter for the
epidemic system. A critical value exists at R =1. Above this threshold, an epidemic can
occur. Below it, there will only be minor outbreaks.

A simple Susceptible-Infected-Removed (SIR) epidemic model serves to introduce R, and
motivate its relationship to the dynamic systems represented by epidemic models.

For simplicity, assume:

Constant (closed) population size, N, of susceptibles
Constant rates (e.g., transmission, removal rates)

No demographic changes (i.e., births and deaths)
Well-mixed population
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A well-mixed population is one where any infected individual has a probability of contacting
any susceptible individual that is reasonably well approximated by the average. This is often
the most problematic assumption, but is easily relaxed in more complex models.

In the closed population of N individuals, let us say that S are susceptible, I infected, and
R are removed. We can thenwrites=S/N,i=1/N, r=R/ N todenote the fraction in
each compartment.

The SIR model (Anderson and May 1991; Diekmann and Heesterbeek 2000) is then:
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where 3 =1c is the effective contact rate, 7 is the transmissibility of the infection, ¢ is the
average contact rate between susceptible and infected hosts, and v is the removal rate. By
assumption all rates are constant. This means that the expected duration of infection is

simply the inverse of the removal rate: d =v™".

An epidemic occurs if the number of infected individuals increases, i.e., di/dt > 0. Solving
equation (2) for this inequality, we get:

Bsi—vi>0
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At the outset of an epidemic, nearly everyone is susceptible. So we can say that s = 1.
Substituting s =1, we arrive at the following inequality

ﬁ:rEd:R0>l
1%

The assumptions of the basic SIR model can easily be relaxed and thus, for a wide range of
circumstances, the logic of the basic reproduction number will apply (Diekmann and
Heesterbeek 2000).

2. Adding Demography

Extending the simple model above to cases where population size is not constant (i.e.,
where there are additions and removals to the population through birth, death, and
migration) is straightforward. In the case of the simple SIR model with demography, the
basic reproduction number remains the ratio of additions to removals multiplied by the
fraction susceptible.

3. Some Abstraction

It is easy to imagine that some or all of the components of R could be functions of
population size or density:
R,=1(N)c(N)d(N),

where N is some measure of population size.

In general, we expect that contact rates are going to be most directly related to population
size and/or density. In addition, though, population density could contribute to higher
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transmissibilities through selection on the pathogen for increased infectiousness or through
reducing host defenses as through social stress, co-morbidity, etc. In the model employed
here, any postulated effect of population growth must do at least one of three things: (1)
increase transmissibility of the pathogen (2) increase the rate of contact between susceptible
and infected individuals, or (3) increase the duration of infectiousness.

It is in this way that the basic reproduction number serves as a conduit for understanding
how myriad environmental, social, and economic changes facilitate (or impede) disease
emergence. Thinking of disease emergence through the lens of R, focuses attention on the

causal pathways in a manner directly analogous to the way that focus on the proximate
determinants of fertility helped us understand demographic transitions (Davis and Blake
1956; Bongaarts 1978).

4. “R Thinking” and Environmental Determinants of Emergence

Further consideration of the components of the basic reproduction number, R =7 ¢ d,

shows why R can be instrumental to understanding the ways in which human-induced
environmental change influence disease emergence. Briefly put, this inequality suggests
that an environmental influence on the three components of R, singly or in combination,

can trigger an epidemic outbreak of infectious disease. The challenge becomes to identify
the ways in which a given environmental change (or set of such changes) impinges on the

component terms of R . By analogy to Ernst Mayr’s “population thinking” (Mayr 2001) in
0

the understanding of evolutionary processes, we call this approach “ R, thinking.”

Consider, first, environmental influences on transmissibility (7 ), the probability of infection
given contact between a susceptible and an infected individual. Transmissibility is directly
related to a host of factors of pathenogenicity including inoculation rates and thresholds,
virulence or toxicity, and so on. Of these, several are sensitive to environmental conditions:
virulence, for example, varies widely with environmental circumstances, owing to the
potential for environmental selection for or against virulence depending on rates and
processes of between-host transmission. A pathogen whose virulence kills the host before
its own reproduction and transmission is itself selected against (Lenski and May 1994; van
Baalen and Sabelis 1995; Frank 1996; Lipsitch et al. 1996; Longini et al. 2002; Galvani
2003).

A possible example relating 7 to environmental change may be provided by the seventh
pandemic of cholera that began in 1961: with the environmental change of slowly improving
sanitation systems and potable water supplies, host survival has recently become more
important to pathogen transmission, apparently selecting for tempered bacterial virulence.
The seventh cholera pandemic has been characterized by a much lower case fatality rate
than in previous epidemics (Longini et al. 2002).

Similarly, consider possible environmental influences on ¢ , the average rate of contact
between susceptible and infected individuals. As noted above, ¢ will obviously increase
with the size and density of the host population, as may occur through such diverse
processes as economic development and colonization projects, for example, and the
spontaneous migration of “environmental refugees” away from degraded environments.

In the particular case of vector-borne diseases, contact rate varies with the “vectorial
capacity” of the vector that shuttles the infection between infecteds and susceptibles.
Vectorial capacity, in turn, is related to vector survival rates, the efficiency of vector infection
and transmission, and so on. Those survival rates are subject to abiotic environmental
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influences, such as ambient temperature, humidity, and the like (Singer and De Castro
2001). And they are also subject to influences of the biotic environment, such as predator
abundance and diversity (as may influence the abundance of malaria-vectoring mosquitoes).
In like manner, contact rate can vary greatly with the number and diversity of alternative
hosts, their disease competencies, and their overall “dilution” effect. A classic example of
the latter comes from the study of Lyme disease, where the fate of an epidemic rides on the
diluting biodiversity of alternative hosts: more diversity means lower R (LoGiudice et al.

2003).

Finally, consider average duration of the infectious period. As a general rule, one may
anticipate that duration of infectiousness will increase with any compromising of the host’s
immune response as may be produced through environmental contamination, various forms
of heat or water stress, and so on (Cassel 1976; Farmer 1996). Similarly, co-morbidity
arising from an environmental change in relation to a secondary infection can have a big
impact (again through compromised immune function) on the infectious period of the primary
disease (Godfrey-Faussett and Ayles 2003). A candidate example of an environmentally-
induced change in duration of infectiousness comes from recent work on malaria among
gold miners of the Amazon (Silbergeld et al. 2000; Crompton et al. 2002), whose immune
systems showed mercury-related impairment.

In ways like these, environmental change may affect the terms of the R equation singly or in

combination. It is thus our conviction that R thinking opens the door to analyzing and

disentangling the various environmental influences that may impinge on infectious disease
transmission in this anthropogenically changing world.

In the remainder of this paper, we look at related uses of R in understanding proximate
determinants of emergence in multi-host communities and in age-structured populations.

5. The Basic Reproduction Number and the Next Generation Matrix

Many of today’s most important emerging infectious diseases are multi-host infections by
their very nature. As a result, they require a slightly more complex formalism for
investigating epidemic thresholds, etc. The basic tool for examining epidemic thresholds in
complex, structured models is the so-called next generation matrix (Diekmann et al. 1990;
Diekmann et al. 1991; Diekmann and Heesterbeek 2000).

Consider a population of individuals (or species) subdivided into n compartments, of which
m are infected. Let x, represent the proportion of the population in the ith compartment and

let the vector of the proportions in all the compartments be x . Let F(x) denote the rate of
appearance of new infections in compartment i and V,(x) be the rate of movement into and

out of state. F, includes new infections only, not transfers of individuals from one infected
compartment to another.

We can now define the matrices,

and
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where x, denotes the disease-free equilibrium and the indices i, j = 1,...,m.

The entries of the matrix G = Fy ' give the rate at which infected individuals of state j
generate new infections of typei. G is called the next generation matrix (Diekmann et al.
1990). R is the dominant eigenvalue of G .

6. Properties of Next Generation Matrices

G is a non-negative matrix. All next generation matrices will also be irreducible. A graph is
irreducible if and only if all compartments or nodes can communicate with each other. The
case of non-communicating states can occur, for example, in zoonotic diseases in which
human infection represents an epidemiologic dead-end. While medical and public health
consequences of human infection in these cases may be important, epidemic control per se
must focus on the competent compartments for transmission. So even in these cases next
generation matrices will be irreducible. In many cases G will also be primitive, meaning that
it will become positive when raised to a sufficiently high power.

For a stage-classified matrix (containing age groups, for example), a sufficient condition for
primitivity is that the life cycle digraph contain at least one self-loop. However, a substantial
fraction of next generation matrices will, in fact, be imprimitive. Imprimitivity will be an issue,
for example, in vector-born diseases with obligate reproduction in a single host.

The individual elements of the matrix G, g, can themselves be interpreted as reproduction

numbers. The element g is the expected number of secondary cases of type i caused by
contact with an infectious individual of class j. For i # j, we call this the “between-class
reproduction number” and for the diagonal elements of the next generation matrix, i.e.,
where i = j, we call g; the “within-class reproduction number.”

7. Perturbation of the Next Generation Matrix

Let R be the dominant eigenvalue, p be the corresponding right eigenvector, and q the
corresponding left eigenvectors of G. p represents the asymptotic distribution of disease
states. q represents the relative contribution to the asymptotic population of each of the
disease states.

Caswell (Caswell 1978; Caswell 2000) provides a detailed derivation of the perturbation. The
basic formula that emerges from this derivation for the sensitivity of the dominant eigenvalue

of the next generation matrix to a small change in element g; is

—=qp. 4
, q.p, (4)

In other words, the sensitivity of fitness to a small change in projection matrix element g; is

simply the ith element of the left eigenvector weighted by the proportion of the stable
population in the j th class.
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It is often instructive to use proportional sensitivities or elasticities:

. _ﬁa_R_ dlog R
Y R Bgi/, dlog g,

Elasticities have two properties that make them very attractive. First, the sum of all
elasticities equals 1,2” €= 1, so there is a sense in which an elasticity represents a given

fraction of the total transmission. Second, the sum of the elasticities of all incoming arcs of
the transmission graph must equal the sum of the elasticities of outgoing arcs (Van
Groenendael et al. 1994).

8. Example: Multi-Host Influenza

Consider a multi-host epidemic model for influenza in which we consider two compartments:
(1) domestic birds and (2) wild birds. Both of these compartments are clearly heavily
collapsed, the former being comprised of domestic chickens, ducks, etc. and the latter
including a wide array of species (Jones 2006). Infection can arise through either within- or
between compartment transmission, leading to a 2x2 next generation matrix. Let w denote
the expected number of secondary infections in wild birds caused by contact with an infected
wild bird in a completely susceptible population. Let d be the analogous quantity for the

domestic compartment and ¢, and ¢, be the analogous quantities for cross-compartment
infection. This yields:

Unfortunately, these quantities remain unknown for most recent influenzas, including avian
flu. Nonetheless, we can use the formalism to make reasonable statements about the
behavior of the system. First, it is probably reasonable to posit that within-compartment
transmission exceeds between-compartment transmission. Second, it is likely that the
within-domestic reproduction number exceeds the within-wild component, at least for avian
flu. If we assume that these two quantities are proportional to each other d = kw for some
k >1and that the between-compartment reproduction numbers can be assumed to be
approximately zero, we get:

d/k O
G=
K

Since G is diagonal, R, = d . lItis nonetheless informative to write out the reproduction
number completely:

2 2
RO:l d+£+ d2—£+d—.
2 k kK

Clearly, for k£ >1, R, is dominated by d.
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We can relax the rather stringent assumption of ¢,,c, =0, and calculate elasticities of R, for

different values of the between-compartment reproduction numbers relative to the within
compartment numbers. Figure 1 plots these elasticities with respect to &, showing that for
nearly all parameter combinations, control of within-domestic compartment new infections
has the greatest impact on reducing R; .

The implication is clear: control measures in this multi-host system should focus on
domestic fowl. The feature of the system that drives domestic fowl to be so important is
largely human demand for animal protein in a growing popultion, and perhaps more
importantly, an increasingly affluent population.

We expect this result to be a general feature of emerging infections of zoonotic origin. The
contact rates of domesticated animals are so much greater than all but the most gregarious
non-domesticates that it is almost certain to be so. Similarly, human-animal contact rates
will typically be greatest with domesticates. As demand for meat increases and market
forces guide meat production toward increased efficiency, contact between humans and
domesticated animals, and the contact rate between the domesticates themselves will
increase. Today there are as many as 5,000 chickens per km? throughout Asia
(Slingenbergh et al. 2004), a spectacular increase in just a few decades.

9. Example: Age-Structured Transmission of Influenza

Using data from the Tecumseh, Michigan influenza study (Longini et al. 1983), we can
construct an age-structured next-generation matrix for influenza transmission dynamics (Hill
and Longini 2003).

[0.60 0.10 0.10 0.10 0.10]
0.20 1.70 0.30 0.20 0.20
G=[040 030 050 0.40 0.30
0.20 0.10 030 0.20 0.10
10.10 0.10 0.10 0.10 0.10]

Note here that the compartments correspond to age-groups of the flu-affected human
population: (1) pre-school age, (2) school age, (3) young adult, (4) mid-adult, (5) old adult.
The within-stage reproduction number with the highest value is stage 2, which corresponds
to school-age children. While it is conceivable that school-age children could shed more
virus or remain infectious for longer periods, the most parsimonious interpretation is that
school children have elevated levels of contact with respect to the other age-classes, leading
to a within-class reproduction number nearly three times as large as the next largest
compartment.

Calculating the elasticities of R yields:

[0.01 0.01 0.00 0.00 0.00
0.01 0.77 0.04 0.01 0.01
E=|0.01 0.04 0.02 0.01 0.00
0.00 0.01 0.01 0.00 0.00
10.00 0.01 0.00 0.00 0.00]
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Clearly, reducing transmission within the school-age class will have the greatest impact on
bringing R, below threshold. A full 77% of the total elasticity of R, lies in the within-school

age reproduction number. This analysis suggests that targeting vaccination campaigns at
school-age children may have large public health benefits, a suggestion that has recent
empirical support (Ghendon et al. 2006). Of course, such a policy may itself have
subsequent population consequences and should be weighed carefully against potential
costs (Carrat et al. 2006).

This has very strong implications for age-structured transmission systems in regions with
very young age structure due to recent rapid population growth. We further expect a greater
impact of school-age children in populations where there is heightened age-grade mixing out
of school.

10. Conclusion

R, , the basic reproduction number, is a quantity of great practical and theoretical value in
the study of infectious diseases in human populations. It tells at a glance, for instance,
whether an infectious disease is epidemic ( R >1) in a population or dying out ( R, <1).

Breaking R, into its components (typically more practical with simple models), moreover,

allows one to consider ways in which anthropogenic environmental change can induce
changes in transmissibility (7 ), average contract rate (¢ ), or in the duration of infection (d ).

The causes of disease emergence and re-emergence are many and complex (Institute of
Medicine 2003). However, the formalism of mathematical epidemiology and basic
reproduction number in particular provide a fulcrum of analysis of the proximate
determinants of disease emergence. With regard to this, we suggest that models of
intermediate complexity (as in those models discussed here) are likely to provide the most
advantage for insight into the process of emergence. While we have focused here primarily
on influenza, we believe that these models are likely to be particularly productive in cases of
emergence facilitated by anthropogenic environmental change (Jones & Durham,
forthcoming).

R, can also be used in the context of the next generation matrix G to provide an assay into
the elasticities of intervention into an epidemic, guiding control policy. In the case of an
epidemic within a multi-host community, such as highly pathogenic avian influenza for
example, this technique allows one to detect those interactions within the community where
disease-control measures would be most effective. In the case of an age-structured
population, the same technique can be used to detect the greatest payoff to control

measures among age groups. In this paper, we explore some first implications of “ R -
thinking” for the study of environmental change and emerging infectious disease. Our goal
has been to explore what those R implications are and, of course, “are not.”
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Figure 1: Elasticity of R with respectto d, dlogR /dlogd. As k gets large (i.e., as the
expected number of infections in domestic fowl which are caused by domestic fowl greatly
exceeds the analogous number in wild birds), the fraction of the total elasticity in R0 with
respect to d approaches unity. Interventions aimed at reducing infections in domestic fowl
will have the greatest impact on reducing R0 . Relatively more between-compartment

transmission slows this approach, but the qualitative behavior remains the same.
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