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 Demographic work often requires constraining arrays of numbers to controls in 

one or two dimensions.  For example, subnational population projections may be 

constrained to a national projection.  If the results are allowed to take on any nonnegative 

values, raking solves the problem in one dimension and two-way iterative raking solves it 

in two dimensions.  The problem is more complicated in one dimension if the data can be 

of any sign, the so-called “plus-minus” problem, as simple raking may produce 

unacceptable results.  This problem is addressed by generalized raking, which preserves 

the structure of the data at a cost of a nonunique solution.  Since demography is 

concerned with people, which come in whole units, data often have to be rounded to 

integers.  The Cox-Ernst algorithm accomplishes an optimal controlled rounding in two 

dimensions.  In one dimension, the Greatest Mantissa algorithm applies a simplified 

version of the Cox-Ernst algorithm. 

 This paper combines into one place all of the above-mentioned problems and 

techniques.  It is written to provide practical guidance to demographers and other 

practitioners who work with these problems.  The demographic variables that can be 

input to these procedures include population, proportions and rates.  The introductory 

section briefly describes each type of problem and points the reader to the relevant 

section.  Each section begins with practical advice, followed by a technical discussion. 

 In all of these methods, final data should, in some way, preserve the structure of 

the original data.  In one dimension, this means that if one initial data element is greater 

than another, then the transformed elements should preserve this relationship.  Optimally, 

the ratios between elements should be preserved, but this can only be done in the specific 

case of controlling a vector whose nonzero elements are of the same sign as the control 

value, with the result left unrounded.  Controlled rounding then destroys the ratios, but 

preserves the order.  The effect on the ratios depends on the magnitudes of the initial data 

elements and unit of rounding.  The effect of controlled rounding on these ratios in 

vectors with large elements relative to the unit of rounding is minimal.  On the other 

hand, initial vectors with elements about the same magnitude as the unit of rounding will 

find these ratios greatly perturbed.  “Generalized raking” of a vector of mixed sign or to 

zero or control of opposite sign to the nonzero data preserves the order of the original 

elements, while destroying the ratios.  The two-dimensional equivalent of raking 

minimizes a function that measures the distortion from the original matrix. 

 One-dimensional “raking” multiplies a vector of data by the ratio of the control to 

the sum of the initial data.  Damage to the structure of the original data is avoided only 

when the control is of the same sign as the nonzero initial data.  When the data are of 

mixed sign or the control is zero or opposite sign of the nonzero data, “generalized 

raking” takes a weighted average of the ordinarily raked data and their projection onto the 

hyperplane defined by the control.  The result, except in the case of a zero control, is 
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nonunique.  Generalized raking has several advantages over the earlier Akers-Siegel 

procedure: a continuous transformation using arithmetic operations is used instead of 

separate rakes for positive and negative data, it easily handles zeroes, and there is never 

any need to arbitrarily shift and then rake the data, when it is impossible to apply the A-S 

method to the original data.  Generalized raking does fail when the original data sum to 

zero: a simple workaround is proposed.  When the original data span a wide range of 

magnitudes, it is possible to simply “stuff” (that is, add) the difference between the 

control and the sum of the original data to the element of largest absolute value.  The 

choice between stuffing and the generalized rake in these instances is up to the analyst: if 

the distortion caused by stuffing is minimal, then stuffing may be advised to simplify 

programming.   Stuffing after rounding is necessary due to current lack of an algorithm to 

do controlled rounding of mixed-sign data. 

 All of the one-dimensional raking procedures are geometrically illustrated.  The 

ordinary and generalized rakes define straight lines when viewed as element-wise 

operations, while the Akers-Siegel procedure defines two rays that intersect at the origin.  

The ordinary and generalized rakes are also viewed as projections of a point onto the 

hyperplane defined by the control. 

 Two-dimensional raking, a.k.a. “iterative proportionate fitting” and the “RAS 

algorithm,” is a much-rediscovered method for constraining a nonnegative matrix to 

positive row and column controls.  The sums of the row and column controls (or 

“marginals”) must be equal for it to work.  It proceeds by alternately raking row data in 

parallel to row controls and column data to column controls until convergence.  It 

minimizes a function that measures the distortion of the data.  The result is unique.  A 

sufficient condition for feasibility is that the original matrix be positive.  When this does 

not obtain, an algorithm based on linear programming can be used to determine 

feasibility.  Some practical guidance for handling zeroes and “low” (i.e., values too low 

to be reported) is given to speed convergence.  This procedure does not generalize to 

three or more dimensions: a positive array with positive marginals can still be infeasible. 

 The Cox-Ernst controlled rounding procedure assures that integers are unchanged 

and nonintegers are rounded to one of their closest integers.  A cost to unconventional 

rounding (that is, rounding in the opposite direction of conventional rounding) is defined 

and minimized.  Because of its complexity, this algorithm is not described in detail.  For 

vectors, the Greatest Mantissa algorithm performs controlled rounding by rounding up 

numbers in order of their mantissas.  This simplification of the Cox-Ernst algorithm is 

simple to describe and program. 

 The Appendix contains plug-in SAS macros to implement each procedure.  These 

macros enable the user to use these algorithms immediately without additional 

programming. 
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