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ABSTRACT 
 

This paper develops multivariate methods for analyzing (1) effects of socioeconomic 
variables on the total fertility rate and its components and (2) effects of socioeconomic 
variables on the trend in the total fertility rate and its components. For the multivariate 
methods to be applicable, the total fertility rate must be calculated from parity 
progression ratios (PPRs), pertaining to the transitions from birth to first marriage, first 
marriage to first birth, first birth to second birth, and so on. The methodology also 
encompasses the total marital fertility rate calculated from PPRs, mean and median ages 
at first marriage, and mean and median closed birth intervals at each parity. The methods 
are applicable to either period measures or cohort measures. The methods are illustrated 
by application to data from the 1993, 1998, and 2003 DHS surveys in the Philippines. 
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This paper develops multivariate methods to estimate effects of socioeconomic predictor 
variables on the total fertility rate (TFR) and on the trend in the TFR. The methods are 
applied to individual-level survey data. The analysis of effects on the trend in the TFR 
requires two or more surveys of the same population at different times.  
 
 The TFR is usually defined as the number of births that a woman would have by 
age 50 if, hypothetically, she lived through her reproductive years experiencing the age-
specific fertility rates (ASFRs) that prevailed in the population in the particular calendar 
year. The TFR so defined is calculated by summing ASFRs (births per woman per year at 
each age) between the ages of 15 and 50.  
 
 For the multivariate methods developed in this paper to be applicable, however, 
the TFR must be calculated from parity progression ratios (PPRs), where the concept of a 
woman’s parity is extended from its usual definition as the number of children that she 
has ever borne to include the state of being single (i.e., never-married) with no children 
ever born and the state of being ever-married with no children ever born. The parity 
progression ratios (PPRs) considered here then pertain to the fractions of women who 
progress from their own birth to first marriage, from first marriage to first birth, from first 
birth to second birth, from second birth to third birth, from third birth to fourth birth, and 
from fourth or higher-order birth to next higher-order birth. The PPRs so obtained are 
aggregated to a TFR and a total marital fertility rate (TMFR). The multivariate methods 
are applicable to either period or cohort measures of the TFR and TMFR as well as each 
PPPR individually. Although it is assumed in this paper that all births occur within 
marriage, the methods can easily be modified to handle premarital births, as is explained 
in the concluding discussion. 
 
 Effects of predictor variables on the trend in the TFR are evaluated in two ways: 
(1) by recalculating trends with one or more predictor variables controlled and (2) by 
decomposing the change in TFR between two periods or two cohorts into components 
due to change in each predictor with the other predictors controlled. 
 
 We focus on the TFR calculated from PPRs instead of the TFR calculated from 
ASFRs (TFRasfr) for two major reasons: The first is that a multivariate method for 
analyzing factors affecting TFRasfr calculated from individual data has already been 
developed and applied by Schoumaker (2004), who used Poisson regression for this 
purpose. As far as we know, a multivariate method for analyzing factors affecting TFR 
calculated from PPRs using individual data has not been developed until now. The 
second reason is that, from an explanatory point of view, age-specific fertility rates are 
not ideal measures of the components of the total fertility rate. A woman’s decision about 
whether to have a next birth does not depend primarily on her age. More important 
considerations are whether she is married, time elapsed since marriage if she is married 
but does not yet have any children, time elapsed since her last birth if she already has 
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children, and the number of children that she already has. The TFR calculated from PPRs  
takes all these considerations into account.  
 
 Another advantage of the TFR calculated from PPRs is that PPRs are unaffected 
by temporary distortions in the parity composition of women in each age group. The TFR 
calculated from ASFRs (TFRasfr), on the other hand, is affected by these temporary 
distortions (Kohler and Ortega 2002a and 2002b; Kohler, Billari, and Ortega 2002). PPRs 
and the TFR calculated from them are also influenced to some extent by temporary 
distortions in the age composition of women at each starting parity, but these distortions 
usually have a smaller effect on the estimate of the TFR. Largely for this reason, external 
shocks, such as economic booms or recessions, result in fertility fluctuations that tend to 
be smaller for TFR calculated from PPRs than for TFR calculated from ASFRs. 
 
 Henceforth in this paper, “TFR” and “TMFR” refer to the total fertility rate and 
the total marital fertility rate calculated from PPRs, whether for periods or cohorts. 
 
 By way of illustration, we apply our methods to both period and cohort data from 
three demographic and health surveys (DHS) undertaken in the Philippines in 1993, 1998, 
and 2003. Period measures are estimated for the 5-year period before each survey. Cohort 
measures are based on the earlier reproductive experience of women age 40–49 at the 
time of each survey. In the Philippines surveys, urban areas were over-sampled, so 
weights must be used to restore representativeness to the sample. Failure to use the 
weights would substantially bias estimates of population composition, which plays an 
important role in our analysis. The three surveys are described in more detail in the basic 
survey reports, which include questionnaires and information about sampling procedures 
(Philippines National Statistics Office and Macro International 1994; Philippines 
National Statistics Office, Philippines Department of Health, and Macro International 
1999; Philippines National Statistics Office and ORC Macro 2004).  
 

PARITY PROGRESSION-BASED MEASURES OF THE TFR AND ITS 
COMPONENTS 

 
We define the following notation for PPRs and the parity transitions to which they refer: 
 
pB PPR for transition from a woman’s own birth to first marriage (B–M) 
pM PPR for transition from first marriage to first birth (M–1) 
p1 PPR for transition from first birth to second birth (1–2) 
p2 PPR for transition from second birth to third birth (2–3) 
p3 PPR for transition from third to fourth birth (3–4) 
p4+ PPR for transition from fourth or higher-order birth to next higher-order birth (4+ 

to 5+) 
 
The choice of a cutoff for the open-ended parity category depends on the overall level of 
fertility and the size of the sample, which together determine the parity at which one 
starts to run out of higher-order births in the sample survey. In the case of our Philippines 
surveys, a cutoff at 4+ is appropriate.  
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 PPRs are calculated from life tables. In general, the life table method is 
appropriate when the input data include time elapsed between a starting event and a 
terminal event. The generic term for a terminal event is “failure,” and we use this term 
throughout this paper. In the case of pB, the starting event is the woman’s own birth and 
“failure” is her first marriage if a first marriage occurs. In the case of pM, p1, p2, p3, and 
p4+, the starting event is either a first marriage or a birth of a particular order, “failure” is 
a next birth, and time elapsed since the starting event is referred to as duration in parity. 
Consistent with demographic usage, we shall refer to a birth-to-first-marriage life table 
also as a nuptiality table. 
 
 Because the number of first marriages that occur before age 15 or after age 40 is 
negligible in the Philippines, we start our nuptiality tables at age 15 and end them at age 
40. Thus time in the nuptiality table ranges from 0 years (corresponding to age 15) to 25 
years (corresponding to age 40). In the analysis of progression to first marriage, we shall 
consider that time in the nuptiality table ranges from 0 to 25 years. In the case of 
subsequent parity transitions, the number of births that occur after 10 years of duration in 
parity is also negligible, so we terminate life tables for these transitions at 10 years. Thus 
time in these life tables ranges from 0 to 10 years. 
 
 A PPR is calculated from a life table by subtracting the proportion “surviving” at 
the end of the life table from one, yielding the proportion who “fail” by the end of the life 
table. 
 
 From the life table for each parity transition, we can also compute a mean failure 
time and a median failure time. In the case of the nuptiality table, the mean and median 
failure times (when added to 15, the age at the start of the nuptiality table) are measures 
of the mean and median age at first marriage. In the case of the life tables for subsequent 
parity transitions, the mean and median failure times (in years) are measures of mean and 
median closed birth interval. (The medians so calculated are true medians, based on all 
failures that occur over the course of the life table. Typically in DHS surveys, medians 
are calculated differently, as the age by which half of the starting cohort experience 
failure, yielding a somewhat higher estimate of the median age at failure.) 

 
 Once PPRs have been calculated using life table methods, TFR is calculated  from 
the PPRs as 
 
 TFR = pBpM + pBpM p1 + pBpM p1 p2 + pB pM p1 p2 p3 + pB pM p1 p2 p3 p4+ /(1–p4+) (1) 
 
As explained by Feeney (1986), the term p4+ /(1–p4+) on the right side of this equation is 
obtained by assuming that p4 and all higher-order PPRs equal p4+ and pulling out a 
geometric series. (Recall that if r is a positive number less than one, the geometric series 
r+r2+r3+... =  r/(1–r).) This turns out to be quite a good approximation, because PPRs at 
parities beyond 4 usually decline rather gradually as parity increases. 
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 The formula for TMFR is the same as the formula for TFR in equation (1), except 
that pB is set equal to one. 
 
 In populations where a substantial proportion of births occur outside of marriage, 
one alternative is to replace pB and pM with p0, defined as the fraction of women who 
eventually proceed from their own birth to a first birth. In our illustrative application to 
the Philippines, a substantial fraction of births occur in non-formalized unions. In the 
three DHS surveys that we examine, the first non-formalized union is treated as a first 
marriage. We therefore retain pB and pM in our analysis of these surveys. 
 

MULTIVARIATE ANALYSIS OF THE TFR AND ITS COMPONENTS 
 
Choosing a multivariate survival model  
 
Because PPRs are derived from life tables, they can be modeled in a multivariate way 
using a multivariate survival model. It is useful in this context to think of such a model as 
a multivariate life table from which PPRs and mean and median failure times can be 
calculated. Because TFR and TMFR are calculated from PPRs, TFR and TMFR can also 
be modeled in a multivariate way. 
 
 A number of multivariate survival models are available. We would like a model 
that handles time-varying predictor variables and time-varying effects of predictor 
variables, because predictors are always time-varying in our period life tables and even to 
some extent in our cohort life tables (as will be explained shortly), and because the 
effects of predictors on parity progression ratios tend to vary systematically over time 
(i.e., over time in the life table). For example, in a multivariate cohort life table, the effect 
of higher education, relative to lower education, is usually to lower the risk of first 
marriage at the younger reproductive ages and raise it at the older reproductive ages, with 
a relatively small effect on overall progression to first marriage and a relatively large 
effect on mean and median age at first marriage. If the effect of education varies with 
time in this way, a proportional hazards model is inadequate, because in a proportional 
hazards model the multiplicative effect of education on the risk of first marriage is 
constant over time in the life table. 
 
 Effects may be time-varying not only for progression to first marriage but also for 
progression to higher-order parities. One reason is that birth intervals (except for the 
interval between first marriage and first birth) tend not to change much as fertility falls 
(Pathak et al. 1998), implying that, in our models, the effect of education on birth 
intervals, as measured by mean or median failure time, tends to be relatively small while 
its effect on PPRs  tends to be relatively large. This is impossible to model with a 
proportional hazards model of parity progression, because in a proportional hazards 
model, mean failure time and the probability of failure by the end of the life table cannot 
vary independently. In a proportional hazards model, if mean failure time rises with 
education, the probability of failure by the end of the life table must fall, and if mean 
failure time falls with education, the probability of failure by the end of the life table 
must rise. 
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 We also need a survival model that can handle left-censoring as well as right-
censoring so that we can fit the model to period data. That is, we need to be able to 
censor not only the part of an individual’s exposure that occurs after the period (right-
censoring) but also the part that occurs before the period (left-censoring). We also need a 
survival model which, when fitted to data, yields a baseline hazard function, so that we 
can estimate not only the effect of a predictor variable on the risk of failure (as measured 
by the coefficients of the predictor variables), but also the risk of failure itself (i.e., the 
hazard function) predicted by the model. Only then can we can calculate predicted values 
of life table parameters such as PPRs and mean and median failure times. This point will 
become clearer in the following paragraphs. 
 
 One possible candidate for our multivariate survival model is the Cox model (Cox 
1972). This model is usually stated in the form of a continuous-time proportional hazards 
model, although the model can also handle, up to a point, both time-varying predictors 
and  time-varying effects of predictors. Cox’s proportional hazards model is 
conceptualized as 
 hi(t) = h0(t) exp[b1 xi1 + ... + bk xik] (2) 
 
where i denotes the ith individual, t denotes continuous time in the life table, xj (j = 1, 2, ..., 
k) is a set of k predictor variables (also called covariates),  bj (j = 1, 2, ..., k) is the set of 
coefficients of those predictors, hi(t) denotes the (unobservable) hazard rate for the ith 
individual at time t, and h0(t) is the baseline hazard function defined when all predictors 
have a value of zero. The continuous-time hazard rate hi(t) is defined as the individual’s 
probability per unit time of experiencing failure in an infinitesimally small time interval 
centered on time t. A continuous-time hazard rate therefore has the dimensions of failures 
per person per unit time. 
 
 The Cox proportional hazards model is often stated alternatively in log-linear 
form: 
 
 log hi(t) = at+ b1 xi1 + ... + bk xik (3) 
 
where at = log h0(t). As always in statistical applications, logarithms are to the base e. 
 
 In equation (2), the exponential term is constant over time t in the life table, and 
that is what makes the model proportional. (Recall the definition of proportionality: two 
variables X and Y are proportional if Y = kX for all values of X and Y, where k is the 
constant of proportionality. In equation (2), variation in hi(t) and h0(t) refers to variation 
over time in the life table, and the exponential term, which does not vary over time, is the 
constant of proportionality.) The constant term in equation (2) is specified as an 
exponential function because the multiplicative effect of the predictors must be a positive 
number, and the function exp(x) / ex is positive for all values of x, and ranges over all 
positive values of x. In the exponential term in equation (2), not only the coefficients of 
the predictors but also the predictors themselves are time-invariant. Only then is the 
model proportional.  
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 A Cox model in which a predictor is time-varying but its effect, as measured by 
its coefficient, is time-invariant might seem to be proportional but is not. To show this, 
we consider a model with only one predictor, urban/rural residence, specified as a time-
varying dummy variable U(t) (1 if urban, 0 if rural) with a fitted coefficient b that is time-
invariant.  U(t) is time-varying because some individuals move from rural to urban or 
vice versa as time progresses. In the case of this simple model, equation (2) reduces to 
hi(t) = h0(t) exp[b Ui(t)]. For an individual person who moves from rural to urban at time 
t0, the effect of residence on hi(t) is to multiply h0(t) by exp(0) = 1 when the person is 
rural (i.e., when U(t) = 0 for t<t0) and by exp(b) when the person is urban (i.e., when U(t) 
= 1 for t$t0). Since the effect of residence on the hazard is not the same at all values of t 
for the individual, the effect is not proportional. Looked at in a more aggregate way, 
however, the effect of “being urban” relative to “being rural” in this simple model is 
always to multiply the baseline hazard h0(t) by exp(b), which is time-invariant. Because 
the model seems to be proportional even though it is not, we refer to it as “quasi-
proportional.” These rather subtle distinctions are relevant to the multivariate period life 
tables of parity progression that we shall consider later.  
 
 The continuous-time Cox model is fitted by the method of partial likelihood. The 
baseline hazard function h0(t) does not appear in the partial likelihood equations—hence 
the word “partial” (Allison 1995, pp. 114–115). Because of this, the partial likelihood 
method yields estimates of the coefficients of the predictors but not an estimate of the 
baseline hazard function h0(t) (equivalently, the term at in equation (3)). The output from 
the partial likelihood procedure is inputted into a second maximum likelihood procedure 
to obtain the baseline hazard function h0(t) (Allison 1995, p. 165). Unfortunately, this 
second procedure does not work when one or more predictor variables or their effects are 
time-varying, in which case the Cox model does not yield a baseline hazard function. 
Because we need the baseline hazard function in order to calculate the hazard function for 
specified values of the predictors (the necessity of this baseline is evident from equations 
(2) and (3)), the Cox model is not suitable for our purposes. A multivariate survival 
model that is suitable is the complementary log-log model, which we consider next. 
 
The complementary log-log (CLL) model 
 
Basic form of the model 
 
The general form of the discrete-time CLL model is 
 
 log[!log(1!Pit)] = at + b1 xi1 + ... + bk xik (4) 
 
where i denotes the ith observation, t is a counter variable denoting life table time interval 
(t = 0, 1, ...), Pit is the discrete probability of failure during the tth life table time interval, 
at is an unspecified function of t (unspecified in the sense of not having a particular 
mathematical form), and predictors and coefficients are as defined in the Cox model in 
equations (2) and (3). Life table time intervals may be of variable length, but if the 
intervals are uniformly one time unit in length (as is assumed henceforth in this paper), 
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then t can also be interpreted as time at the start of the interval. Equation (4) can be 
written more compactly as 
 
 log[!log(1!Pt)] = at + bx (5) 
 
where b is a row vector of coefficients and x is a column vector of predictor variables. 
The model is fitted by the method of maximum likelihood (Prentice and Gloeckler 1978). 
 
 Pt is often called the discrete hazard, but it should be noted that Pt is defined quite 
differently from the hazard h(t) in the continuous-time Cox model. h(t) is defined as the 
probability of failure per unit time, evaluated at time t, whereas Pt is defined as the 
probability (not per unit time) that failure will occur in the time interval, whatever its 
length. If the interval is one time unit in length, the value of Pt and the average value of 
h(t) over the interval will usually be close but not identical. If the interval is more than 
one time unit in length, Pt and the average value of h(t) over the interval will be very 
different. 
 
 The derivation of equations (4) and (5) illustrates that the CLL model is a 
proportional hazards model. We consider a simplified derivation pertaining to one-time-
unit intervals (years), where t denotes exact time at the start of a life table time interval (t 
= 0, 1, 2, ...). The derivation begins with log[!log(1!Pt)] and makes the substitutions 
Pt = [S(t)!S(t+1)]/S(t) and S(t) = [S0(t)]exp(bx), where Pt denotes the probability of failure 
between exact times t and t+1 conditional on survival to age t, S(t) denotes the 
unconditional probability of surviving to exact time t, and S0(t) denotes the value of S(t) 
when all of the predictor variables equal zero (i.e., when exp(bx) = 1). After these two 
substitutions and some algebraic manipulation, one obtains 
 
 log[!log(1!Pt)] = log[!log(1!P0,t)] + bx (6) 
 
where P0,t denotes the baseline Pt function defined when all predictors equal zero. 
Equation (6) is the same as equation (5), in which at = log[!log(1!P0,t)]. The substitution 
of [S0(t)]exp(bx) for S(t) is what makes equation (5) a proportional hazards model, because 
the relationship S(t) = [S0(t)]exp(bx) is valid only for a proportional hazards model 
(Retherford and Choe 1993, pp. 194!195). It is possible, however, to “trick” the CLL 
model in equation (5) to handle non-proportionality in the form of time-varying predictor 
variables and time-varying effects of predictor variables, as will be explained shortly. 
 
 A major advantage of the discrete-time CLL model over the continuous-time Cox 
model is that the former model yields a baseline Pt function, even when the CLL model 
in equation (5) is tricked to include time-varying predictors and time-varying effects of 
predictors. The reason why the CLL model yields this additional information is that the 
CLL model is estimated using maximum likelihood instead of partial likelihood, so that 
the terms at (actually the terms from which at is calculated, as explained below) in 
equation (5) remain in the likelihood equations and can therefore be estimated. 
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 The CLL model is superior to another discrete-time survival model, namely the 
discrete-time logit model, because coefficients of predictors in the CLL model, but not in 
the discrete-time logit model, have the same interpretation as coefficients of predictors in 
the Cox model, namely that a one-unit increase in a predictor multiplies the underlying 
continuous hazard hi(t) by exp(b), where b is the coefficient of the predictor. This is 
evident from the substitution S(t) = [S0(t)]exp(bx) (which is derived from the continuous-
time Cox model) in the derivation of equation (5) above. Due to differences in how the 
continuous-time Cox model and the discrete-time CLL model are formulated and 
estimated, however, these two models, when specified with the same predictor variables 
and applied to the same data, yield estimates of the coefficient vector b that are not quite 
identical.  
 
Dummy variable specification of life table time interval 
 
The terms at in equation (5) require further explanation. The regression model that is 
actually fitted (which is a single equation, not one equation for each value of t) includes, 
in place of at, a set of variables representing life table time intervals. Life table time 
intervals are represented in two ways. The first way is in terms of a variable that we shall 
call YEAR, which is simply life table life table time t (t = 0, 1, 2, ...). But equation (5) 
does not use this variable. Instead, the variable YEAR is classified into one-year 
categories, and life table time intervals are specified by a set of dummy variables, each 
representing a particular life table time interval. In the case of our multivariate nuptiality 
tables for the Philippines, there are 25 time intervals, ranging from the 0th time interval to 
the 24th time interval. (Note that, in order to be consistent with our definition of life table 
time t, we do not refer to the initial time interval as the first time interval or the last time 
interval as the 25th time interval.) We denote these dummy variables as T0, T1, ..., T23, 
with the last interval (for which t = 24) as the reference category. It follows that time 
interval 0 is specified by T0 = 1 and T1 = T2 = ... = T23 = 0; time interval 1 is specified by 
T0 = 0, T1 = 1, and T2 = ... = T23 = 0; and time interval 24 (the last interval) is specified by 
T0 = T1 = ... = T23 = 0. We denote the fitted coefficients of these dummy variables as c0, 
c1, ..., c23.  
 
 In equation (5), the intercept of the fitted model (which is the predicted value of 
log[!log(1!P24)] when all predictors—including the dummy variables T0, T1, ..., T23 —
are set to zero) is a24, corresponding to the last time interval. The predicted value of a23 = 
log[!log(1!P23)], with all the xj and T0, ..., T22 set to zero and T23 set to one, is a24+c23. 
Thus the value of a23 in equation (5) must be calculated as a23=a24+c23. More generally, 
at=a24+ct. As this example shows, there are actually many more variables and 
coefficients on the right side of equation (5) than meet the eye. An important point to 
note in this regard is that the dummy variable specification of life table time interval 
allows maximum flexibility in the way that at can vary over time. For this reason, the 
dummy variable specification of life table time interval is referred to as an unrestricted 
specification. 
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Expanded data set of person-year observations 
 
The sample of observations to which the CLL model in equation (4) is fitted also requires 
further explanation. Each individual’s survival history is broken down into a set of 
discrete time segments, which in our analysis are person-years, up to the year of failure 
(person-years after the year of failure are excluded). These person-years are then treated 
as distinct observations, and the new sample of person-year observations is referred to as 
the “expanded sample.” Variables in the original woman record are carried over into the 
person-year records created from that woman record. Additional variables assigned to the 
person-year records are YEAR (life table time t), a variable that we call CALTIME that 
indicates the calendar year in which the person-year observation is located, and a dummy 
variable FAILURE indicating whether failure occurred during that person-year of 
exposure. In our nuptiality example, the value of YEAR for a particular person-year 
record is calculated as the difference between CALTIME and the calendar year in which 
the person reached age 15. The values of these variables for each person-year observation 
are the input data for fitting the model. Note that the input datum for the dependent 
variable is the value of FAILURE (1 if yes, 0 if no) rather than a value of Pt, which is 
unobservable. (See Allison 1995, ch. 7, for details on how to set up the person-year data 
set.) 
 
 A separate expanded data set of person-year observations is created for each 
parity transition in the period analysis and in the cohort analysis. Table 1 shows the 
distribution of the original survey samples for 1993, 1998, and 2003 by residence and 
education. Distributions are shown for women age 15–49 and women age 40–49. 
Expanded data sets for the period analysis and the cohort analysis, shown in Table 2, are 
created from these two groups of women. The sample sizes in Table 2 indicate number of 
person-year observations in the Philippines data sets to which CLL models are fitted. For 
each of the three surveys, two separate data sets, one for the period analysis and one for 
the cohort analysis, are created for each of the six parity transitions, for a total of 36 data 
sets. 
 

- Tables 1 and 2 about here - 
 
 The person-year observations created from a person record are not independent 
observations. It might seem that these observations should be treated as a cluster, and that 
the model fitting procedure should include an adjustment for clustering. It has been 
shown, however, that adjustments for clustering are unnecessary for this type of survival 
model (see Allison (1982; 1995, ch. 7). 
 
 Because the CLL model is applied to a person-year data set, it easily handles 
censoring—both right-censoring and left-censoring. In our analysis of period data, right-
censoring pertains to that part of an individual’s exposure to risk of failure that occurs 
after the calendar period, and left-censoring pertains to that part of an individual’s 
exposure that occurs before the calendar period. The CLL model’s way of handling 
censoring is quite simple: If a person is censored in a particular year (either right-
censored or left-censored), the corresponding person-year is not included in the expanded 
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data set for the particular parity transition under consideration. In the period analysis, a 
person-year is censored if the person-year does not fall in the calendar period under 
consideration. 
 
 More generally in the period analysis, a person-year is included in the expanded 
data set only if all of the following conditions are met: (1) the person-year falls within the 
specified calendar time period and within the time limits of the life table (e.g., in our 
nuptiality tables, the value of t for the person-year record cannot be less than 0 or greater 
than 24); (2) the person corresponding to the person-year record experienced the starting 
event either in a previous year or in the particular year under consideration; (3) the person 
did not experience failure in a previous year and may or may not have experienced failure 
in the particular year under consideration. Person-years not meeting all three of these 
conditions are coded as censored and not included in the expanded data set for a given 
parity transition. The censoring criteria are illustrated diagrammatically in Figure 1 in the 
case of progression from 15th birthday to first marriage. 
 

- Figure 1 about here - 
 
Time-varying predictors 
 
The CLL model also easily handles time-varying predictor variables. One simply assigns, 
where appropriate, different values of the predictor to different person-year observations 
created from a particular person record. Although the value of a predictor can vary from 
one person-year to the next for a person, the CLL model assumes that the value of the 
predictor does not vary within a person-year. In other words, in the expanded sample of 
person-year observations, predictors are not time-varying, because the value of the 
predictor that is assigned to a person-year never changes. This assumption is reflected in 
the form of equation (4), where predictor variables for person-year observations do not 
have t subscripts. In effect, the expansion of the person sample into a person-year sample 
converts time-varying predictors into time-invariant predictors. 
 
 Our illustrative models for the Philippines include only urban/rural residence and 
education as predictors. Both variables are defined at the time of survey. Residence is 
defined as a categorical variable with two categories, namely urban and rural. Education 
is defined as a categorical variable with three categories, namely less than secondary, 
some or completed secondary, and more than secondary. Henceforth we refer to these 
three education categories as low, medium, and high. 
 
 We define residence and education as time-invariant predictors, because the 
surveys do not provide enough information to model them as time-varying. For example, 
if a woman was age 45 and urban at the time of survey, we assume (incorrectly in many 
cases) that she was also urban at all earlier ages. Despite this, in the application of the 
CLL model to the Philippines data, residence and education must be viewed as time-
varying predictors. In the period analysis, this is so because the group of women who 
reach a particular age during the period is not the same group of women who reach some 
other age during the period (although the two groups may overlap). For example, during 
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the 5-year period immediately preceding any one of our three surveys, the women who 
had a 20th birthday during the period and the women who had a 40th birthday during the 
period are two completely different groups of women. In the case of the Philippines, 
these two groups differ substantially in population composition by residence and 
education, because the younger women tend to be more urban and more educated than 
the older women. Thus, although residence and education are time-invariant variables for 
particular women, they are time-varying predictors in our period life tables. 
 
 Even in our cohort analysis, the residence and education variables are somewhat 
time-varying, because the person-year sample design leaves room for the effects of 
“frailty.” “Frailty” pertains to the effects of unobserved heterogeneity in the risk of 
failure in each life table time interval. Unobserved heterogeneity means that person-year 
observations at higher risk of failure are weeded out faster over the course of the life table. 
For example, in a nuptiality table, less-educated persons have higher interval-specific 
risks of failure (i.e., fourth birth) than more-educated persons. This means that in the 
cohort data set for progression to fourth birth, in the absence of a control for education, 
the proportion of person-year observations with low education will be higher at the 
beginning than at the end of a cohort life table, and vice versa for high education.  
 
Time-varying effects (unrestricted case) 
 
The CLL model can also incorporate time-varying effects of predictors. Suppose that, in 
our example of progression to first marriage, the predictor is urban/rural residence, 
specified by the dummy variable U (1 if urban, 0 if rural). If the effect of urban/rural 
residence is not time-varying, the effect of residence on log[!log(1!Pt)] is simply the 
coefficient of U, which we denote by b, which is not time-varying. This is so regardless 
of whether U itself is time-varying. The effect of residence can be re-specified as time-
varying by interacting U with the dummy variables representing life table time interval. 
In our example of progression to first marriage, this results in an additional set of 
predictor variables that we denote here as W0 = U T0, W1 = U T1, ..., W23 = U T23.   
 
 The effect of education is specified as time-varying in a similar fashion, but this 
time two dummy variables, M and H, must be used to represent the three categories of 
high, medium, and low education. The three categories are represented as (M, H) = (0, 0) 
for low education, (1, 0) for medium education, and (0, 1) for high education. Both M and 
H must be interacted with the dummy variables T0, T1, ..., T23. The specification of this 
interaction requires the creation the of the new variables X0 = MT0, X1 = M T1, ..., X23= M 
T23 with coefficients u0, u1, ..., u23, and Y0 = H T0, Y1 = H T1, ..., Y23 = H T23 with 
coefficients v0, v1, ..., v23. 
 
 With the effects of residence and education specified in this way, the model is 
 
 log[!log(1!Pt)] = at + bU + d0W0 + ... +d23W23 + gMM + u0X0 + ... + u23X23  
 
  + gHH + v0Y0 + ... + v23Y23 (7) 
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 In equation (7), the terms containing U can be written as 
bU+d0W0+d1W1+...+d23W23 = bU+d0UT0+d1UT1+...+d23UT23 = U(b+d0T0 
+d1T1+...+d23T23). The effect of a one-unit change in U (i.e., a change from 0 to 1, 
representing a change from rural to urban) on log[!log(1!Pt)] is then b+d0 for the 0th 
time interval, because for this interval T0 = 1 and T1 = T2 = ... = T23 = 0, so that the above 
sum of four terms containing U reduces to (b+d0)U. By similar reasoning, the effect of a 
one-unit change in U is b+d1 for the 1st time interval, b+d2 for the 2nd time interval, ..., 
b+d23 for the 23rd time interval, and b for the 24th time interval. Thus, as long as d0, d1, ..., 
d23 are not all zero, the effect of urban/rural residence on log[!log(1!Pt)] (and hence on 
Pt itself) is time-varying. Similarly, the effect of a change from low to medium education 
is gM+u0 for the 0th time interval, gM+u1 for the 1st time interval, ..., gM+u23 for the 23rd 
time interval, and gM for the 24th time interval; the effect of a change from low to high 
education is gH+v0 for the 0th time interval, gH+v1 for the first time interval, ..., gH+v23 for 
the 23rd time interval and gH  for the 24th time interval; and the effect of a change from 
medium to high education is the difference between the low-to-high effects and the low-
to-medium effects. 
 
 When time-varying effects are incorporated into the CLL model in this way, it is 
the effect of residence—now represented by not only the coefficient of U but also the 
coefficients of W0, W1, ..., W23—that is time-varying, not the coefficients themselves. The 
estimated coefficients are pure numbers and therefore time-invariant. The same point 
applies to the effect of education and the coefficients of the education-related variables. 
Again, because of the dummy-variable specification of the life table time interval 
variable, this approach to time-varying effects achieves maximum flexibility in the way 
that time-varying effects are modeled. For this reason, this approach to modeling time-
varying effects is also referred to as unrestricted. 
 
 When we specify time-varying predictors and time-varying effects of predictors, 
the CLL model is still specified as in equations (4) and (5), which at first blush is still a 
proportional hazards model. This is so because the computer does not see the time 
variation when it fits the model. It sees only person-year observations that are time-
invariant, predictors that are time-invariant, and coefficients to be fitted that are time-
invariant. Time variation is hidden in the definitions of sample observations (person-
years) and in the definitions of the variables W0, W1, ..., W23, X0, X1, ..., X23, Y0, Y1, ..., Y23,. 
In this way, we “trick” a model designed for time-invariant predictors and time-invariant 
effects into including time-varying predictors and time-varying effects. This means, 
among other things, that the model with time-varying predictors and time-varying effects 
is fitted in exactly the same way as the model with time-invariant predictors and time-
invariant effects. 
 
Time varying effects: linear, quadratic, or cubic specification 
 
There is a problem with the unrestricted specification of time-varying effects of predictor 
variables: The CLL model will not converge unless each of the four cells in the cross-
classification of the dichotomous dependent variable FAILURE against each 
dichotomous predictor variable contains at least one person-month observation. The 
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problem arises in the case of the dummy variables W0, W1, ..., W23, X0, X1, ..., X23, Y0, 
Y1, ..., Y23. For example, consider the variable Y23 = H T23 in the multivariate nuptiality 
analysis. This variable is 1 if the person-year observation has high education and is still 
single at age 38, and 0 otherwise. In the cross-classification of FAILURE against Y23, it 
could easily be the case that there are no person-year observations for which both of these 
variables are 1. In this case one has to combine time intervals until the cross-
classification has cases in all four cells. The problem becomes more acute at higher-order 
parity transitions, where the number of cases is in the data set is smaller to begin with. 
Because of this problem, we have used an alternative specification of time-varying 
effects that avoids this problem and requires many fewer predictor variables. 
 
 We again use progression to first marriage as an example, with residence as the 
sole predictor and its effect modeled as time-varying. Instead of interacting U with the 24 
dummy variables representing life table time intervals to model time-varying effects, we 
create the variables Z1 = Ut, Z2 = Ut2, and Z3 = Ut3, and we add these variables to each 
person-year record. 
 
 If we want to use a linear specification of the time-varying effect, we include the 
variable Z1 in the set of predictors in the CLL model. If we want to use a quadratic 
specification, we include both Z1 and Z2. If we want to use a cubic specification, we 
include all three variables Z1, Z2, and Z3.  
 
 Suppose that we use a cubic specification, and suppose that the fitted coefficients 
of Z1, Z2, and Z3 are c, d, and e. The  right side of the model equation then includes the 
terms bU+cZ1+dZ2+eZ3 = bU +cUt+dUt2+eUt3 = U(b+ct+dt2+et3). Thus, at any given 
value of t, the effect of a one-unit change in U is to increase log[!log(1!Pt)] in equation 
(5) by  b+ct+dt2+et3 units. 
 
 The same approach is used to simplify the specification of the time-varying 
effects of M and H. In the case of the cubic specification, the complete model equation is 
 
 log[!log(1!Pt)] = at + U(b+ct+dt2+et3) + M(f+gt+ht2+it3) + H(j+kt+mt2+nt3) (8) 
 
 In the previous section that used dummy variable specifications throughout, we 
needed 75 coefficients to model the time-varying effects of residence and education (25 
for residence and 50 for education). In the alternative approach using a cubic 
specification, we need only twelve coefficients (four for residence and eight for 
education). 
 
Weights 
 
The three Philippines DHS survey samples for 1993, 1998, and 2003 are weighted 
samples. In each survey, sample weights are normalized so that the weighted number of 
cases is identical to the unweighted number of cases when using the full DHS data set 
with no selection. In other words, the weights sum to the total survey sample size.  
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 In our analysis, when the expanded data sets are created, the weight for a woman 
carries over to the person-year observations created for that woman. In other words, the 
same weight is attached both to the original woman record and to each person-year record 
created from that original woman record. 
 
 Each time a CLL model is fitted to an expanded data set (recall from Table 2 that 
our analysis is based on 36 different expanded data sets), it is important that the weights 
attached to the person-year records be normalized so that they sum to the number of 
person-year observations in the particular expanded data set. If this is not done, estimates 
are biased and likelihood ratio tests of the difference between two nested models are 
invalid. 
 
 For calculating normalized weights, we have the following definitions pertaining 
to the particular expanded data set to which a CLL model is fitted: 
 
N   The number of person-year observations in the expanded data set 
wi   The original weight attached to the ith person-year record in the expanded data set 
W   The sum of the wi over the person-year observations in the expanded data set 
wi* Normalized weight to be used when fitting the CLL model to the expanded data 

set 
 
Normalized weights are calculated as 
 
 wi* = (3wi)( N/W) (9) 
 
where the summation is over all person-year observations in the expanded data set. 
 
Output of the CLL model 
 
The output from the fitted CLL model includes estimates of the intercept, the coefficients 
ct of the dummy variables representing life table time intervals (t = 0, 1, ..., 23 in the case 
of progression to first marriage), and the coefficients bj of the predictors (j = 1, 2, ..., k in 
equation (4)). Values of at are calculated from the intercept (a24 in the case of progression 
to first marriage) and the coefficients ct (t = 0, ...,23). Standard errors of the estimates of 
the intercept a24 and the coefficients ct and bj, as well as various other statistics useful for 
hypothesis testing, are also part of the output. 
 
Calculating predicted values of the Pt function and derived life table from the fitted 
CLL model 
 
Once we have fitted values of at and the coefficients bj in equation (4), we can predict 
values of log[!log(1!Pit)] on the left side of the equation for specified values of the 
predictors. We can then solve for the value of Pit, which is assumed to be the same for all 
persons with the specified values of the predictors, so we drop the subscript i and just 
write Pt as in equation (5) . If there are 25 time intervals, as in the case of our nuptiality 
tables, there are 25 such equations (all derived from a single-equation CLL model), 
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which are solved for 25 values of Pt, for t = 0, 1, ..., 24. These 25 values of Pt constitute 
the discrete-time hazard function for the specified values of the predictors. 
 
 A baseline P0,t function is obtained by setting all predictors (i.e., all 
socioeconomic predictors) equal to zero in the fitted model in equation (4). Equation (4) 
then reduces to 
 
 log[!log(1!P0,t)] = at (10) 
 
If t ranges from 0 to 24, equation (5) represents 25 separate equations, one for each value 
of t. Each equation can be solved for Pt, yielding 
 
 P0,t = 1! exp[!exp(at)] (11) 
 
where the subscript 0 in P0,t denotes the baseline value of Pt with all predictors set to zero. 
From equations (10) and (11) it is evident that the function at is a simple mathematical 
transformation of the baseline P0,t function, and vice versa. 
 
 In the more general case, for arbitrary values of the predictors 
 
 Pt = 1! exp[!exp(at + bx)] (12) 
 
 The Pt function (evaluated either with all predictors set to zero or at other 
specified values of the predictors) determines an entire life table. In presenting 
calculation formulae for the life table measures of interest, we interpret t as exact time at 
the start of a life table time interval. 
 
 Given predicted values of Pt, as calculated from a fitted CLL model, values of the 
survivorship function S(t) at exact time t are calculated sequentially as 
 
 S(0) = 1    
 S(t+1) = S(t) (1!Pt),  t=0, 1, ..., 24 . (13) 
 
The unconditional probability of failure between t and t+1 is calculated as  
 
 ft  = S(t) Pt  . (14) 
 
The unconditional probability of failure by time t is calculated as 
 
 F(t) = 1!S(t) . (15) 
 
The parity progression ratio is calculated (in the case of progression to first marriage) as 
 
 PPR = F(25) . (16) 
 
The mean age at failure is calculated as  
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 Mean failure time = 3 [ft/F(25)](t +0.5) , (17) 
 
where the summation ranges from t=0 to t=24.  
 
The median failure time is calculated as 
 
 Median failure time = t, such that F(t)/F(25) = 0.5.  (18) 
 
 Pt functions and life tables for progression from first marriage to first birth, first 
birth to second birth, second birth to third birth, third birth to fourth birth, and fourth or 
higher-order birth to next higher-order birth, defined at specified values of the predictor 
variables, are calculated in a similar manner, except that life tables have 10 one-year time 
intervals instead of 25 one-year time intervals. PPRs and mean and median failure times 
are calculated from these life tables.  
 
 Using equation (1), TFR for specified values of the predictor variables is then 
calculated from the PPRs for specified values of the predictor variables. TMFR is 
similarly calculated, with pB set to one in equation (1).  
 
 One has to be careful in constructing the data set for progression from fourth or 
higher-order birth to next higher-order birth (4+ to 5+). In the cohort analysis (based on 
women age 40–49 at the time of the survey), a woman of, say, parity 7 at the time of the 
survey gets counted four times in the 4+ category, just like four separate women—the 
first time from fourth to fifth birth, the second time from fifth to sixth birth, the third time 
from sixth to seventh birth, and the fourth time from seventh to eighth birth (even though 
she did not have an eighth birth up to the time of the survey). In the period analysis, the 
only difference is that if, for example, a parity-7 woman had her seventh birth before the 
5-calendar-year period before the survey, then she gets counted only once, namely for the 
transition between 7 and 8. And even then we include only those person-years that fall 
within the 5-year calendar period before the survey. Suppose, as another example, that 
she had her fifth birth just before the 5-year period. We would then count her three 
times—for the 5–6 transition, the 6–7 transition, and the 7–8 transition, but not the 4–5 
transition. The general strategy for constructing the expanded data set for, say, the 4+ to 
5+ transition is to form the expanded data set for each transition separately for 4–5, 5–
6, ..., n to n+1 (where n+1 is the highest parity attained by anyone in the original person 
sample), and then merge these data sets. 
 
 Once the CLL model is fitted to the data for a particular parity transition, the 
calculation of predicted values of the Pt function and derived life table for specified 
values of the predictor variables is easily done in a spreadsheet  program such as EXCEL. 
The spreadsheet format is the same in the period analysis and the cohort analysis. 
 
 Note that the CLL model can be run without any predictors except the dummy 
variables representing life table time intervals. In this case one obtains a basic life table 
for either period data or cohort data, pertaining to all persons regardless of their 



 19

characteristics. One can calculate PPRs, mean and median failure times, TFR, and TMFR 
from these basic life tables. These are shown in Table 3. 
 

- Table 3 about here - 
 

 In Table 3, it is noteworthy that the period estimate pB (PPR for progression to 
first marriage) increased between the two surveys. The cohort estimates of pM and p1 did 
not change over ten years. In all other cases, the PPR declined consistently over time. In 
all case, mean age at marriage exceeds median age at marriage, and mean birth intervals 
exceed median birth intervals, because distributions of “failures” tend to be skewed 
toward higher ages (in the case of first marriage) and higher durations in parity (in the 
case of births). Birth intervals between first marriage and first birth are very short, 
reflecting the fact that in the Philippines many first births are conceived shortly before 
marriage or non-formalized union. 
 
Calculating unadjusted and adjusted values of the Pt function and derived life table 
 
By “unadjusted” we mean “without controls”, and by “adjusted” we mean “with 
controls”.  
 
 To obtain unadjusted values of the Pt function and derived life table for each 
category of a predictor such as urban/rural residence, we run the CLL model with 
residence as the sole predictor variable, without time-varying effects. Once the model is 
fitted, we use it to calculate two life tables, one for urban and one for rural, by 
alternatively setting U to 1 and 0 in the model equations.  From these two life tables we 
calculate urban and rural values of the PPR, urban and rural values of the mean failure 
time, and urban and rural values of the median failure time. We refer to the life tables for 
urban and rural as unadjusted life tables, and to the values of the PPR and mean and 
median failure times calculated from these urban and rural life tables as unadjusted 
values. 
 
 To obtain adjusted estimates of the Pt function and derived life tables, one runs 
the model again, this time with not only residence but also all the other predictors 
included in the model. (In our Philippines example, the only other predictor is education, 
but for the moment we shall speak in terms of the more general case of more than two 
predictors.) The other predictor variables serve as controls. The procedure is the same as 
in the unadjusted case, except that we hold the control variables constant at their interval-
specific mean values when varying residence from urban to rural. By “interval” is meant 
life table time interval. For example, in the analysis of progression to first marriage, 
where the model can be thought of as comprising 25 equations (one for each value of t), 
25 separate means of M and H, representing education, are used as controls when 
computing adjusted values of the Pt function and derived life tables for urban and rural. 
These interval-specific means are calculated from the expanded data set to which the 
CLL model for a particular parity transition is fitted.  
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 We refer to the two life tables for urban and rural calculated in this way as 
adjusted life tables—adjusted in the sense that the other predictors are controlled by 
holding them constant at their interval-specific mean values when residence is varied 
from urban to rural—and to the values of the PPR and mean and median ages at marriage 
calculated from these adjusted urban and rural life tables as adjusted values. 
 
 In both the period analysis and the cohort analysis, interval-specific means rather 
than the overall means of M and H must be used as control values when calculating 
adjusted Pt values and derived life tables for urban and rural. It is especially important to 
do this in the period analysis, because the use of overall means results in younger women 
being treated as less educated than they really are and older women being treated as more 
educated than they really are. In models with time-varying effects of education, this can 
result in a substantial upward bias for younger women and a substantial downward bias 
for older women in the period estimates of adjusted values of Pt by urban and rural 
residence. We use interval-specific means in both the period analysis and the cohort 
analysis. 

 
 The above is procedure for calculating unadjusted and adjusted values is then 
repeated, with another of the predictors considered as the principal predictor in place of 
residence. In the unadjusted case, a new model must be run each time another predictor is 
selected as the sole predictor variable in the model. In the adjusted case, however, a new 
model need not be run, because all the predictors are already in the model the first time 
around. One only needs to change the way in which the predictor variables are set to 
particular values.  
 
 In the case of adjusted estimates, when a predictor other than residence is chosen 
as the principal predictor variable, the set of control variables again includes all of the 
other predictors, so that this time residence is included in the set of control variables. One 
proceeds in this way until each and every predictor variable has been treated as the 
principal predictor variable. 
 
 The calculation of adjusted Pt functions and derived life tables again is easily 
carried out in a spreadsheet program such as EXCEL. 
 
 Unadjusted and adjusted Pt functions and life tables for categories of each 
predictor variable are calculated in this way for each of the parity transitions from 15th 
birthday to first marriage, from first marriage to first birth, from first birth to second birth, 
and so on. For each parity transition, the unadjusted and adjusted life tables yield 
unadjusted and adjusted values of the PPR and mean and median failure times for 
categories of each predictor variable. The unadjusted and adjusted PPRs for the various 
parity transitions are substituted into equation (1) to yield unadjusted and adjusted values 
of TFR and (with pB set to one) TMFR for categories of each predictor variable. 
 
 A final point concerns how to handle time-varying effects of predictors when 
calculating adjusted life tables. We consider the time-varying effect of residence as an 
example. When the effect of residence on log[!log(1!Pt)] is modeled as time-varying, 
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the way in which U is set alternatively to 1 and 0 requires further explanation. The term 
containing U on the right side of equation (8) is U(b+ct+dt2+et3). In the case of urban, 
this term equals b for the 0th interval, b+c+d+e for the 1st interval, b+2c+4d+9e for the 
2nd interval, and so on. In the case of rural, the term U(b+ct+dt2+et3) is always zero 
because U is zero. It should be noted that the value of e can be very small because t3 gets 
very large for intervals at the end of the life table. One has to be sure to instruct the 
computer program that estimates the CLL model (we used GENMOD in SAS) to format 
the estimates to enough decimal places (we used ten decimal places) to produce at least 
four significant digits in the estimate of the coefficient e.  
 
 Before proceeding to calculate unadjusted and adjusted values of PPRs, mean and 
median ages at marriage, and mean and median closed birth intervals, it is necessary to 
choose a a CLL model specification for calculating adjusted values. Table 4 compares 
four specifications, all of which include both residence and education as predictor 
variables: (1) quasi-proportional (time-varying predictors without time-varying effects), 
(2) time-varying predictors with a linear specification of time-varying effects, (3) time-
varying predictors with a quadratic specification of time-varying effects, and (4) time-
varying predictors with a cubic specification of time-varying effects. For reasons of space, 
the table is illustrative, pertaining only to progression to first marriage. It confirms the 
expectation that inclusion of time-varying effects in the model usually has a greater effect 
on mean and median ages at marriage than on the PPR. Likelihood ratio tests comparing 
nested models show that the quadratic specification fits the data much better than either 
the quasi-proportional specification or the linear specification. The cubic specification is 
significantly better than the quadratic specification in the period analysis but not in the 
cohort analysis. Similar tables for higher-order transitions (not shown) also indicate that 
the quadratic specification is significantly better than either the quasi-proportional 
specification or the linear specification, and that the cubic specification is sometimes, but 
not always, significantly better than the quadratic specification. On the basis of these 
tables, we decided always to use the cubic specification when calculating adjusted 
estimates, in order to get the best possible fit to the data. 
 

- Table 4 about here - 
 

 Ideally, model results should be accompanied by tables of estimated coefficients 
and their standard errors. Because the number of coefficients is large, however, we do not 
present this information. Instead, we have limited tests of statistical significance to 
comparison of two CLL models where one model is nested in the other, as in Table 4. 
The likelihood ratio test is then used to test whether the more-elaborate model is 
significantly better than the less-elaborate model. 
 
 Tables 5–11 show unadjusted and adjusted estimates of PPRs, mean and median 
ages at marriage and closed birth intervals, and TFR and TMFR for the three surveys. In 
Table 5, pertaining to progression to first marriage, PPR tends to rise over time for both 
periods and cohorts in both the unadjusted and adjusted cases. PPR tends to be higher for 
rural than for urban, and higher for those with less education. Mean and median ages at 
marriage tend to be lower for rural than for urban, and lower for those with less education. 
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Controlling for education does not have much effect on urban-rural differences, but 
controlling for residence usually reduces the differences by education fairly substantially. 
The controls tend to have a greater effect on mean and median ages at marriage than on 
the PPR, except in the case of high education, where the control for residence has a 
substantial effect on both PPR and mean and median ages at marriage. 
 

- Table 5 about here - 
 
 The adjusted period estimates in Table 6, pertaining to the transition from 
marriage to first birth, show high PPRs that declined only slightly over time, mainly 
between the second and third surveys. As noted earlier, birth intervals are very short, 
apparently due to the high frequency of births conceived shortly before first marriage or 
non-formalized union. Birth intervals increased somewhat over time, again mainly 
between the second and third surveys. By residence, birth intervals increased slightly in 
both urban and rural areas. By education, they increased for low and medium education 
but changed little for high education. The cohort pattern was somewhat different. PPRs 
hardly changed, but mean and median age at marriage fell slightly for medium education. 
 

- Table 6 about here - 
 

 The adjusted period estimates in Table 7, pertaining to the transition from first to 
second birth, show declines in PPRs that are much greater for urban than for rural, and 
much greater for low and medium education than for high education. Mean and median 
birth intervals tend to increase fairly substantially over time in all residence and 
education categories, except for medium education, where the increase was very small. In 
the case of cohorts, PPRs decline slightly over time, whereas birth intervals tend to 
increase more substantially, in most cases by about 0.2 year. 
 

- Table 7 about here - 
 

 The adjusted period estimates in Table 8, 9, and 10, pertaining to the transitions 
from second to third birth, third to fourth birth, and fourth or higher-order birth to next 
birth, show regular patterns by residence and education and over time. For each period 
and each cohort, PPRs tend to be higher and birth intervals shorter for rural than for 
urban. By education, PPRs tend to decrease and birth intervals to increase with education. 
Over time, PPRs tend to fall and birth intervals to increase. Interestingly, in the transition 
from third to fourth birth, the period estimates of birth intervals tend to dip downward 
between the first and second surveys and then increase substantially by 0.4–0.5 year 
between the second a third surveys. The dip in birth intervals for 1993–97 is not reflected 
by an upward spike in PPRs, however, as one might expect. This unexpected result may 
have something to do with the fact that the decision on whether to have a fourth birth is a 
key decision for many couples, given that the TFR for 1993–97 was 3.1 children per 
woman, as seen earlier in Table 3.  
 

- Tables 8–10 about here - 
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 Table 11 shows unadjusted and adjusted estimates of TFR and TMFR, calculated 
from the unadjusted and adjusted estimates of PPRs in Tables 5–10. TFR and TMFR are 
always higher for rural than for urban, and always lower with more education. As 
expected, differentials by residence and differentials by education tend to be smaller for 
adjusted than for unadjusted. The table also shows that TFR and TMFR fall consistently 
over time. The only exception is the unadjusted cohort TMFR for medium education, 
which rises sharply between 1993 and 1998 and then falls even more sharply between 
1998 and 2003. 
 

- Table 11 about here - 
 
 The mode of presentation of regression results in Tables 5–11 is known in the 
literature as multiple classification analysis (MCA) (Andrews, Morgan, and Sonquist 
1969; Retherford and Choe 1993). The MCA mode of presenting results has the 
advantage of transforming rather complicated and voluminous regression results into 
simple bivariate tables that are readily understood not only by statisticians and 
demographers but also by policy makers and the intelligent layman. The MCA approach 
to presenting results focuses on predicted values of the dependent variable (e.g., PPR, 
mean or median failure time, TFR, or TMFR) classified by categories of each predictor 
variable, with other predictor variables held constant. 
 
MULTIVARIATE ANALYSIS OF TRENDS IN THE TFR AND ITS COMPONENTS 

 
Multivariate analysis of trends over several surveys 
 
Until now, our multivariate analysis has been cross-sectional, in the sense that our CLL 
models have been applied separately to one survey at a time. We now consider how this 
multivariate cross-sectional analysis can be extended into a multivariate longitudinal 
analysis. By this we mean an analysis of how much each socioeconomic predictor 
variable contributes to the trend in a nuptiality or fertility measure while holding the other 
predictor variables constant. 
 
 When we analyze how a predictor contributes to a trend, we distinguish between 
(1) the contribution of changes in population composition by categories of that predictor 
and (2) the contribution of changes in the cross-sectional effect of that predictor on the 
nuptiality or fertility measure under consideration. Population composition is measured 
by the means of the dummy variables representing a predictor, and cross-sectional effects 
are measured by coefficients of those dummy variables. Regarding population 
composition, in the case of residence the mean of U (1 if urban, 0 if rural) is simply the 
proportion urban in the sample of person-years pertaining to the parity transition under 
consideration. In the case of education, the mean of H is the proportion with high 
education, the mean of M is the proportion with medium education, and the difference 
between one and the sum of the high and medium proportions is the proportion with low 
education. The analysis employs interval-specific means rather than overall means to 
measure population composition. 
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 The logic of the multivariate longitudinal approach is the following: First we 
calculate the trend in a particular measure, such as pB (the PPR for progression to first 
marriage), based on model-predicted values of pB with the predictors U, M, and H all set 
at their interval-specific mean values in the underlying CLL model. This is done 
separately for each survey. In the case of residence, it is convenient to conceptualize each 
set of interval-specific means as a 25×1 column array U. Similarly, in the case of 
education, we define the column arrays M and H.  
 
 Then we recalculate the trend, this time substituting the mean of U over the three 
surveys in place of the observed value of U in each individual survey. If changes in 
population composition by urban/rural residence explain part of the trend, the trend will 
become flatter once population composition by urban/rural residence is controlled in this 
way.  
 
 Then we recalculate the trend a second time, this time with not only a common 
value of U but also common values of M and H representing education. Then we 
recalculate the trend a third time, additionally using common values of the coefficients of 
U and its time-varying components (coefficients b, c, d, and e in equation (8)), where 
again the common values are obtained by averaging over the three surveys. Then we 
recalculate the trend a fourth time, additionally using a common set of values of the 
coefficients of M, H, and their time-varying components (coefficients f, g, h, i, j, k, m, 
and n in equation (8)). 
 
 Equalizing means of predictors across the three surveys allows us to look at the 
effects on the trend stemming from changes in population composition by residence and 
education. Equalizing coefficients of predictors across the three surveys allows us to look 
at the effects on the trend stemming from changes in the cross-sectional effects of these 
predictors. Somewhat arbitrarily, we have specified the order of introduction of changes 
as residence composition, education composition, residence effects, education effects. In 
general, the order of introduction will make a difference in the results. 
 
 Finally, the original trend and the four modified trends are plotted on the same 
graph in order to see visually how each set of additional controls affects the trend. If 
changes in population composition by residence and education and changes in the cross-
sectional effects of residence and education on the Pt function are all that matter, the 
trend in the particular fertility or nuptiality measure considered will disappear when 
means and coefficients are equalized over the three surveys. Any residual trend is a result 
of changes in the baseline Pt function with all predictors set to zero. This residual trend 
reflects the effects of changes in unobserved variables, plus across-the-board effects of 
economic and social change that affect all individuals regardless of their values on the 
predictor variables. We expect these across-the-board effects to be larger for trends in 
period measures of fertility and nuptiality than for trends in cohort measures of fertility 
and nuptiality, because population-level shocks such as economic booms and busts are 
period-specific to a much greater extent than they are cohort-specific. Thus we expect the 
residual trend to be flatter in the case of cohort measures of fertility and nuptiality than in 



 25

the case of period measures of fertility and nuptiality. Results for the Philippines are 
shown in Figure 2. 
 

- Figure 2 about here - 
 

[It was not possible to complete this part of the empirical analysis before the PAA 
meeting. Therefore, Figure 2 is omitted from this version of the paper.] 
 
Decomposition of change in the TFR and its components between two surveys 
 
Method of varying one thing at a time. Decomposing fertility change into components 
due to change in each socioeconomic predictor variable while holding the other 
socioeconomic predictor variables constant is another way of analyzing the trend in 
fertility. The first step in the decomposition analysis is to compute the change that is to be 
decomposed. By way of example, we consider the change in pB  (the PPR for progression 
to first marriage) between the 1993 and 2003 DHS surveys in the Philippines. We 
compute this change using values of pB computed from CLL models that include both 
residence and education as time-varying predictors with a cubic specification of time-
varying effects, fitted to each survey separately and evaluated at the interval-specific 
means of the predictors for each survey separately. Let D denote the change in pB 
between the two surveys (pB in the later survey minus pB in the earlier survey), calculated 
in this way. We wish to decompose D into components. 
 
 The components of D to be calculated include components due to changes in 
population composition by residence and education and components due to changes in 
the effects of residence and education. Changes in population composition are again 
indicated by changes in the interval-specific means of the dummy variables representing 
residence and education, and changes in effects are indicated by changes in the 
coefficients of these variables and the variables representing the time-varying 
components of these variables. In this approach to calculating decompositions, the order 
in which components are calculated makes no difference in the estimated size of the 
components, as will become clear shortly. 
 
 We consider components due to changes in population composition first. As in 
the previous section, population composition is measured by the set of interval-specific 
means of the of  the dummy variables representing the predictor variables. The first step 
in calculating the component of D due to changes in population composition by 
urban/rural residence is to recalculate the value of pB from the first survey by substituting 
the interval-specific means U in the second survey in place of the interval-specific means 
of U in the first survey. The means of the education-related predictors are left unchanged 
at their mean values M and H in the first survey. The coefficients of the various 
predictors are also left unchanged at their values in the first survey. 
 
 The second step is to calculate a new value of D, denoted by D*, using the 
recalculated value of pB from the first survey and the original value of pB from the second 
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survey. The difference D – D* is interpreted as the component of D due to changes in the 
interval-specific means of the residence-related variables between the two surveys. 
 The component of D due to changes in the interval-specific means of the 
education-related variables is calculated in a similar manner. 
 
 The component of D due to changes in the coefficients of the residence-related 
variables and the component of D due to changes in the coefficients of the education-
related variables are also calculated in a similar manner. The component of D due to 
change in the baseline Pt function (for which the values of U, M, and H are all zero) is 
also calculated in a similar manner. 
 
 Decompositions of change in the other PPRs, in mean and median failure time for 
each PPR, in TFR, and in TMFR are also calculated using this procedure of varying one 
thing at a time. In the case of TFR and TMFR, components due to changes in means of 
predictors, coefficients of predictors, and baseline Pt functions can be further broken 
down into subcomponents due to changes in means, coefficients, and baseline Pt 
functions pertaining to each PPR separately. Varying means and coefficients is simply 
done for one PPR at a time. 
 
 A residual component in the decomposition is obtained by summing the 
components of D as calculated above, and then subtracting this sum from D. 
 
 Results of applying the method of varying one thing at a time to Philippines data 
are shown in Table 12. In all cases, PPRs, TFR, and TMFR decomposed into five 
components due to changes in residence composition, education composition, residence 
effects, education effects, and baseline hazard function, plus a sixth residual component. 
(We have not calculated the more detailed decomposition of changes in TFR and TMFR 
into additional parity-specific subcomponents, although that could be done.) Changes in 
residence composition explain little of the change in PPRs, TFR, or TMFR. Changes in 
education composition explain more, especially in the cohort case. The components due 
to changes in the effects of residence and education are opposite in sign and offset each 
other to some extent, with the residence components tending to be somewhat larger in 
absolute magnitude than the education components. In the case of individual PPRs, the 
largest components are those stemming from change in the baseline hazard function 
(except for pB and pM in the cohort case, where the changes being decomposed are very 
small). The components due to changes in the baseline hazard function tend to be larger 
in the period case than in the cohort case, as expected. This is also true of the 
decomposition of change in TMFR. In the case of TFR, however, the component due to 
changes in baseline hazard functions is about the same for the period TFR and the cohort 
TFR. This rather different result probably occurs because pB rose instead of declined over 
time, and because the period pB rose much more than the cohort pB. In the case of changes 
in PPRs, residual components in the decompositions tend to be uniformly small in the 
period case, but somewhat larger and offsetting in the cohort case. In the case of TFR and 
TMFR, residual components are small in both the period case and the cohort case. 
 

- Table 12 about here - 
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Method of cumulatively varying one thing at a time. This method is similar to that 
described in the previous section, except that changes in interval-specific means, 
coefficients, and baseline Pt function are introduced in a cumulative manner. In this case, 
the order of introduction, which is somewhat arbitrary, makes a difference. We use the 
following order: interval-specific means of residence, interval-specific means of 
education, coefficients of residence-related variables, coefficients of education-related 
variables, baseline Pt function. Components are calculated as incremental changes in D. 
In this case there is no residual component in the decomposition. Results for the method 
of cumulatively varying one thing at a time are shown in Table 13. Qualitative 
conclusions from this table are broadly similar to those from Table 12.  
 

- Table 13 about here - 
 

CONCLUSION 
 
Our preferred survival model for multivariate analysis of parity progression-based 
measures of the total fertility rate (TFR) and its components using individual-level data is 
the complementary log-log (CLL) model with time-varying predictors and a cubic 
specification of time-varying effects. “Survival” in this case means “not having a first 
marriage by age 40” or “not having a next birth after 10 years of duration in parity.” 
Conversely, “failure” means “having a first marriage by age 40” or “having a next birth 
before 10 years of duration in parity.” The analysis using Philippines data shows that 
time-varying-effects models are necessary for an adequate analysis of the effects of 
socioeconomic variables on the probability of “failure,” because these effects are far from 
proportional. The methodology is applicable to both period and cohort measures of the 
TFR and its components.  
 
 For the methodology to realize its full potential in terms of applicability to survey 
data, demographic and health surveys and fertility surveys need to start collecting more 
information on single (i.e., never-married) women. Currently, most of these surveys 
collect a great deal of demographic, socioeconomic, and health information from ever-
married women but very little from single women. Given the increasingly large effect of 
later marriage and less marriage on fertility in most countries of the world (though not in 
the Philippines over the time periods we have examined), the need for more information 
on single women is increasingly apparent. 
 
 The potential applicability of the methodology would also be greatly enhanced if 
fertility surveys devoted more effort to the collection of integrated individual event 
histories covering marriages, education, work, and migration as well as pregnancies and 
births. 
 
 Our methodology, as applied to Philippines data in this paper, assumes that no 
births occur before first marriage or non-formalized union. The methodology is easily 
modified, however, when many births occur before first marriage or non-formalized 
union. In this case, one uses p0 (PPR for the transition from parity 0 to parity 1, regardless 
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of marital status) in place of pB and pM and includes in the set of predictor variables 
dummy variables to represent whatever marital status categories are deemed appropriate 
(e.g., three dummy variables to represent the four categories of single, currently married, 
divorced or separated, and widowed). One then calculates PPRs, mean and median ages 
at marriage and closed birth intervals, TFR, and TMFR for each marital status. Of course, 
this modified approach requires detailed event-history information for single women as 
well as ever-married women, and marital status categories must be defined broadly 
enough to include sufficient numbers of cases. 
 
 Finally, it should be noted that the multivariate period and cohort life table 
approach developed here can be applied not only to parity progression but also to any 
measure involving time elapsed between a starting event and a terminating event (e.g., 
birth and death, entering and exiting the formal education system, entering and exiting 
the labor force, giving birth and stopping breastfeeding). 
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Survey yeaEducation Urban Rural Total Urban Rural Total

1993 Low 13.5 19.9 33.3 22.3 31.8 54.1
Medium 23.7 16.0 39.7 15.2 9.1 24.3
High  19.3 7.6 26.9 16.2 5.5 21.6
Total 56.5 43.4 100.0 53.7 46.3 100.0

             (N = 15029)                (N = 2707)

1998 Low 10.2 17.5 27.8 16.4 28.8 45.2
Medium 24.7 17.6 42.3 16.7 11.1 27.8
High  21.7 8.3 29.9 21.2 5.8 27.0
Total 56.6 43.4 100.0 54.3 45.7 100.0

             (N = 13983)                 (N =2651)

2003 Low 9.4 15.0 24.5 16.3 24.6 40.9
Medium 26.0 18.9 44.8 19.3 12.8 32.2
High  22.4 8.3 30.8 19.8 7.2 27.0
Total 57.8 42.2 100.0 55.4 44.6 100.0

             (N = 13633)               (N =  2915)

Women age 15-49 Women age 40-49

Table 1: Percent distribution of women by urban-rural residence and education: 1993, 1998, and 
2003 DHS surveys, Philippines

Note: "Low" education means less than secondary, "medium" means some or completed secondary, 
and "high" means more than secondary. The samples for which the distributions are shown include 
single women as well as ever-married women.

Table 1: Percent distribution of women by urban-rural residence and education: 1993, 1998, and 
2003 DHS surveys, Philippines

Note: "Low" education means less than secondary, "medium" means some or completed secondary, 
and "high" means more than secondary. The samples for which the distributions are shown include 
single women as well as ever-married women.



Analysis type
   Survey year B-M M-1 1-2 2-3 3-4 4+ - 5+

Period analysis
   1993 24117 4492 7866 8098 7054 16615
   1998 21867 4577 7502 7453 6872 15568
   2003 20097 4880 8313 7866 6381 12972

Cohort analysis
   1993 22687 6434 9208 9897 9667 26841
   1998 22619 6607 9324 10110 9980 25706
   2003 24686 7050 10598 11256 10968 24252

Parity transition

Table 2: Expanded sample sizes: 1993, 1998, and 2003 DHS surveys, Philippines

Notes: Expanded sample sizes are numbers of person-year observations. Each cell in 
the table corresponds to a separate data set, for which the number of person-year 
observations is shown. B-M denotes the transition from a woman's own birth to first 
marriage, and M-1 denotes the transition from first marriage to first birth.



Parity transition
   Life table measure 1988-92 1993-97 1998-02 1993 1998 2003

B-M
   PPR 0.86 0.88 0.91 0.94 0.92 0.94
   Mean age at marriage 24.0 23.9 23.3 21.9 22.1 22.3
   Median age at marriage 23.0 23.2 22.5 21.1 21.3 21.4

M-1
   PPR 0.96 0.96 0.93 0.96 0.96 0.96
   Mean interval 1.7 1.8 1.8 1.8 1.8 1.8
   Median interval 1.5 1.6 1.6 1.6 1.6 1.6

 1-2
   PPR 0.87 0.84 0.81 0.94 0.91 0.91
   Mean interval 3.2 3.2 3.4 2.8 2.8 3.0
   Median interval 2.8 2.8 2.9 2.5 2.5 2.6

 2-3
   PPR 0.79 0.76 0.70 0.90 0.85 0.84
   Mean interval 3.4 3.4 3.9 3.0 3.1 3.2
   Median interval 3.0 3.0 3.3 2.7 2.7 2.8

 3-4
   PPR 0.72 0.64 0.62 0.82 0.78 0.75
   Mean interval 3.5 3.5 3.8 3.2 3.2 3.3
   Median interval 3.0 3.0 3.3 2.8 2.8 2.9

 4+ to 5+
   PPR 0.69 0.65 0.63 0.76 0.74 0.72
   Mean interval 3.2 3.3 3.4 2.9 3.1 3.1
   Median interval 2.9 2.9 3.0 2.7 2.8 2.8

TFR 3.44 3.10 2.84 5.15 4.29 4.25
TMFR 4.02 3.50 3.10 5.50 4.85 4.50

Period analysis Cohort analysis

Table 3: Period and cohort estimates of parity progression ratios, mean and median ages at first 
marriage, and mean and median closed birth intervals, derived from CLL models in which the only 
predictor variables are the set of dummy variables representing life table time intervals: Based on 
Philippines DHS surveys for 1993, 1998, and 2003

Notes: In the period analysis, the time periods are the 5-year period before each of the 1993, 1998, 
and 2003 surveys. Separate CLL models are calculated for the 5-year period before each survey, 
using data from only that survey. In the cohort analysis, a cohort is defined by the cohort's age at 
the time of survey. Three cohorts are defined as women age 40-49 at the time of each of the three 
surveys. A separate CLL models is calculated for the cohort from each survey, using data from only 
that survey. Unadjusted values are based on CLL models with time-varying predictors (either 
residence or education but not both) without time-varying effects. Adjusted values are based on CLL
models with time-varying predictors (both residence and education) with a cubic specification of 
time-varying effects.



1 2 3 4

Residence
  Urban PPR 0.87 0.88 0.88 0.88

Mean age at marriage 23.9 24.2 24.0 24.3
Median age at marriage 23.0 23.5 23.3 23.5

  Rural PPR 0.95 0.94 0.95 0.95
Mean age at marriage 22.7 22.8 22.9 23.1
Median age at marriage 21.9 22.1 22.0 22.4

Education
  Low PPR 0.99 0.95 0.96 0.96

Mean age at marriage 21.6 20.6 20.8 20.9
Median age at marriage 20.8 19.8 19.5 19.6

  Medium PPR 0.95 0.94 0.94 0.94
Mean age at marriage 22.8 22.7 22.6 22.6
Median age at marriage 22.1 21.9 21.7 21.7

  High PPR 0.82 0.88 0.87 0.87
Mean age at marriage 24.3 25.5 25.2 25.3
Median age at marriage 23.6 24.8 24.7 24.7

Likelihood ratio test (p-values) 0.00 0.00 0.04

Residence
   Urban PPR 0.93 0.93 0.93 0.93

Mean age at marriage 22.6 22.9 23.1 23.1
Median age at marriage 21.7 22.1 22.3 22.4

   Rural PPR 0.94 0.94 0.94 0.94
Mean age at marriage 22.3 22.5 22.9 22.9
Median age at marriage 21.4 21.7 21.9 21.9

Education
  Low PPR 0.98 0.95 0.95 0.95

Mean age at marriage 21.4 20.6 20.8 20.8
Median age at marriage 20.6 19.8 19.7 19.7

  Medium PPR 0.97 0.96 0.96 0.96
Mean age at marriage 21.9 21.9 21.9 21.9
Median age at marriage 21.1 21.2 21.1 21.1

PERIOD ANALYSIS

Model

COHORT ANALYSIS

Table 4: Adjusted values of parity progression ratios and mean and median age at first marriage, as 
calculated from four alternative models: progression from birth to first marriage (B-M): 2003 DHS, 
Philippines



  High PPR 0.85 0.91 0.90 0.90
Mean age at marriage 23.9 25.5 25.3 25.4
Median age at marriage 22.9 24.8 24.7 24.6

Likelihood ratio test (p-values) 0.00 0.00 0.22

Notes:

Life tables of progression from birth to first marriage start at age 15 and end at age 40.

Period estimates pertain to the 5-year period before the survey. Cohort estimates are based 
on the marriage and birth histories of women age 40-49 at the time of the survey.

Model 1: Predictors are U, M, and H. Model is quasi-proportional, with time-varying 
predictors without time-varying effects.
Model 2: Predictors are U, M, and H, with time-varying predictors and a linear specification 
of the time-varying effects of U, M, and H.
Model 3: Predictors are U, M, and H, with time-varying predictors and a quadratic 
specification of the time-varying effects of U, M, and H.
Model 4: Predictors are U, M, and H, with time-varying predictors and a cubic specification 
of the time-varying effects of U, M, and H.

Adjusted estimates of PPR and mean and median age at first marriage, classified by urban-
rural residence, are based on CLL models that contain both residence and education as 
predictor variables. Adjusted estimates are calculated from the fitted CLL model by varying 
the value of U while holding M and H (representing medium and high education) constant at 
their interval-specific mean values in the sample to which the model is fitted. Likewise, 
adjusted estimates classified by low, medium, and high education are calculated from the 
same CLL model by varying the values of M and H while holding U (representing urban 
residence) constant at its interval-specific mean values in the sample to which the model is 
fitted.

The likelihood ratio test compares two models (where one model is nested in the other) in 
order to see whether the more elaborate model is significantly better than the less elaborate 
model. A p-value is the probability that the more elaborate model is no better than the less 
elaborate model. A p-value in a particular column compares the model in that column with 
the model in the previous column.



1988-92 1993-97 1998-02 1993 1998 2003

Residence
   Urban PPR 0.80 0.82 0.87 0.92 0.90 0.93

Mean age at marriage 24.5 24.6 23.9 22.3 22.5 22.7
Median age at marriage 23.5 24.1 21.6 21.5 21.6 21.6

   Rural PPR 0.93 0.96 0.96 0.96 0.95 0.96
Mean age at marriage 23.2 22.8 22.4 21.4 21.6 21.8
Median age at marriage 22.2 22.1 20.8 20.6 20.8 20.8

Education
   Low PPR 0.95 0.96 0.99 0.97 0.97 0.98

Mean age at marriage 22.6 22.7 21.3 21.1 21.2 21.4
Median age at marriage 21.7 22.0 20.6 20.4 20.5 20.6

   Medium PPR 0.90 0.91 0.95 0.94 0.94 0.97
Mean age at marriage 23.5 23.6 22.8 22.0 22.0 21.9
Median age at marriage 22.6 22.9 22.0 21.3 21.3 22.0

   High PPR 0.73 0.81 0.82 0.83 0.82 0.84
Mean age at marriage 24.8 24.5 24.3 23.4 23.4 23.9
Median age at marriage 23.9 23.9 23.7 22.6 22.5 23.7

Residence
   Urban PPR 0.81 0.82 0.88 0.92 0.90 0.93

Mean age at marriage 24.9 25.0 24.3 22.6 22.8 23.1
Median age at marriage 24.1 24.4 23.5 21.9 22.0 22.4

   Rural PPR 0.89 0.95 0.95 0.95 0.93 0.94
Mean age at marriage 23.7 23.3 23.1 22.3 22.9 22.9
Median age at marriage 22.7 22.6 22.4 21.5 22.0 21.9

Education
   Low PPR 0.90 0.88 0.96 0.95 0.94 0.95

Mean age at marriage 22.3 22.0 20.9 20.7 20.6 20.8
Median age at marriage 20.8 20.7 19.6 19.7 19.7 19.7

   Medium PPR 0.87 0.88 0.94 0.94 0.93 0.96
Mean age at marriage 23.3 23.5 22.6 22.0 21.9 21.9
Median age at marriage 22.1 22.5 21.7 21.3 21.1 21.1

   High PPR 0.80 0.88 0.87 0.90 0.89 0.90
Mean age at marriage 25.9 25.7 25.3 25.1 25.1 25.4
Median age at marriage 25.4 25.2 24.7 24.8 24.3 24.6

Period analysis Cohort analysis

UNADJUSTED ESTIMATES

ADJUSTED ESTIMATES

Table 5: Unadjusted and adjusted estimates of parity progression ratios and mean and median ages at 
marriage for progression from birth to first marriage (B-M): 1993, 1998, and 2003 DHS surveys, Philippines



1988-92 1993-97 1998-02 1993 1998 2003

Residence
   Urban PPR 0.96 0.96 0.93 0.96 0.97 0.96

Mean closed interval 1.75 1.78 1.92 1.87 1.86 1.85
Median closed interval 1.59 1.55 1.59 1.59 1.61 1.57

   Rural PPR 0.97 0.96 0.95 0.97 0.97 0.96
Mean closed interval 1.69 1.81 1.81 1.87 1.88 1.85
Median closed interval 1.54 1.56 1.54 1.54 1.62 1.57

Education
   Low PPR 0.96 0.95 0.92 0.97 0.96 0.96

Mean closed interval 1.73 1.84 1.95 1.87 1.93 1.89
Median closed interval 1.61 1.58 1.61 1.60 1.65 1.59

   Medium PPR 0.94 0.96 0.94 0.96 0.98 0.97
Mean closed interval 1.87 1.79 1.87 1.93 1.75 1.81
Median closed interval 1.57 1.56 1.57 1.63 1.55 1.55

   High PPR 0.94 0.96 0.94 0.97 0.97 0.97
Mean closed interval 1.83 1.77 1.83 1.80 1.88 1.82
Median closed interval 1.55 1.55 1.55 1.57 1.62 1.56

Residence
   Urban PPR 0.96 0.95 0.93 0.96 0.97 0.96

Mean closed interval 1.76 1.73 1.98 1.87 1.90 1.82
Median closed interval 1.55 1.52 1.61 1.59 1.62 1.56

   Rural PPR 0.97 0.97 0.94 0.97 0.96 0.97
Mean closed interval 1.68 1.86 1.74 1.87 1.83 1.87
Median closed interval 1.50 1.60 1.53 1.61 1.60 1.59

Education
   Low PPR 0.97 0.96 0.93 0.97 0.97 0.96

Mean closed interval 1.85 1.86 2.00 1.90 1.96 1.92
Median closed interval 1.62 1.60 1.71 1.59 1.67 1.61

   Medium PPR 0.97 0.96 0.95 0.96 0.97 0.96
Mean closed interval 1.71 1.76 1.96 1.92 1.69 1.80
Median closed interval 1.51 1.55 1.62 1.68 1.54 1.55

   High PPR 0.96 0.96 0.93 0.96 0.96 0.96
Mean closed interval 1.65 1.79 1.69 1.72 1.89 1.78
Median closed interval 1.48 1.54 1.44 1.53 1.60 1.53

Period analysis Cohort analysis

UNADJUSTED ESTIMATES

ADJUSTED ESTIMATES

Table 6: Unadjusted and adjusted estimates of parity progression ratios and mean and median closed birth 
intervals for progression from first marriage to first birth (M-1): 1993, 1998, and 2003 DHS surveys, 
Philippines



1988-92 1993-97 1998-02 1993 1998 2003

Residence
   Urban PPR 0.87 0.81 0.79 0.94 0.89 0.90

Mean closed interval 3.30 3.49 3.61 2.86 3.01 3.09
Median closed interval 2.81 2.90 3.02 2.56 2.63 2.66

   Rural PPR 0.90 0.90 0.86 0.95 0.95 0.93
Mean closed interval 3.18 3.20 3.40 2.75 2.74 2.93
Median closed interval 2.73 2.72 2.86 2.49 2.45 2.56

Education
   Low PPR 0.92 0.93 0.88 0.96 0.94 0.93

Mean closed interval 3.06 3.06 3.35 2.75 2.78 2.92
Median closed interval 2.66 2.64 2.82 2.49 2.48 2.55

   Medium PPR 0.89 0.85 0.84 0.96 0.93 0.92
Mean closed interval 3.23 3.36 3.47 2.76 2.85 3.01
Median closed interval 2.77 2.82 2.91 2.50 2.53 2.61

   High PPR 0.83 0.79 0.77 0.90 0.87 0.87
Mean closed interval 3.43 3.53 3.65 3.03 3.08 3.19
Median closed interval 2.90 2.93 3.07 2.66 2.67 2.72

Residence
   Urban PPR 0.87 0.82 0.79 0.93 0.89 0.90

Mean closed interval 3.26 3.40 3.54 2.76 2.98 3.06
Median closed interval 2.77 2.85 2.97 2.50 2.57 2.62

   Rural PPR 0.88 0.89 0.86 0.96 0.94 0.93
Mean closed interval 3.22 3.28 3.51 2.86 2.77 2.97
Median closed interval 2.78 2.78 2.92 2.55 2.50 2.59

Education
   Low PPR 0.92 0.89 0.86 0.95 0.93 0.93

Mean closed interval 3.03 2.96 3.30 2.75 2.83 2.95
Median closed interval 2.68 2.63 2.86 2.51 2.53 2.58

   Medium PPR 0.90 0.85 0.82 0.96 0.93 0.92
Mean closed interval 3.34 3.38 3.37 2.76 2.83 3.01
Median closed interval 2.83 2.79 2.86 2.51 2.51 2.62

   High PPR 0.81 0.82 0.80 0.90 0.88 0.87
Mean closed interval 3.33 3.61 3.80 2.96 3.03 3.14
Median closed interval 2.79 3.00 3.19 2.59 2.59 2.65

Period analysis Cohort analysis

UNADJUSTED ESTIMATES

ADJUSTED ESTIMATES

Table 7: Unadjusted and adjusted estimates of parity progression ratios and mean and median closed birth 
intervals for progression from first birth to second birth (1-2): 1993, 1998, and 2003 DHS surveys, 
Philippines



1988-92 1993-97 1998-02 1993 1998 2003

Residence
   Urban PPR 0.77 0.73 0.68 0.88 0.82 0.83

Mean closed interval 3.54 3.76 4.10 3.18 3.34 3.40
Median closed interval 3.09 3.18 3.54 2.77 2.86 2.88

   Rural PPR 0.84 0.84 0.77 0.93 0.91 0.89
Mean closed interval 3.38 3.50 3.89 2.97 3.05 3.21
Median closed interval 2.94 2.95 3.30 2.65 2.68 2.77

Education
   Low PPR 0.89 0.84 0.83 0.94 0.93 0.91

Mean closed interval 3.24 3.48 3.74 2.95 3.01 3.14
Median closed interval 2.86 2.94 3.12 2.64 2.67 2.73

   Medium PPR 0.80 0.82 0.74 0.89 0.86 0.85
Mean closed interval 3.48 3.55 3.98 3.16 3.24 3.35
Median closed interval 3.05 2.99 3.41 2.76 2.81 2.85

   High PPR 0.69 0.68 0.60 0.80 0.73 0.76
Mean closed interval 3.70 3.84 4.22 3.42 3.55 3.58
Median closed interval 3.27 3.28 3.70 2.93 3.02 3.01

Residence
   Urban PPR 0.77 0.74 0.68 0.88 0.82 0.84

Mean closed interval 3.43 3.71 4.07 3.09 3.23 3.35
Median closed interval 2.97 3.05 3.51 2.70 2.77 2.84

   Rural PPR 0.82 0.82 0.74 0.92 0.89 0.87
Mean closed interval 3.52 3.51 3.99 3.06 3.17 3.29
Median closed interval 3.07 3.03 3.40 2.71 2.77 2.81

Education
   Low PPR 0.88 0.80 0.82 0.94 0.92 0.91

Mean closed interval 3.24 3.35 3.80 2.97 3.06 3.15
Median closed interval 2.88 2.87 3.28 2.68 2.70 2.76

   Medium PPR 0.79 0.81 0.71 0.89 0.86 0.85
Mean closed interval 3.37 3.52 3.79 3.18 3.17 3.31
Median closed interval 2.99 3.02 3.17 2.74 2.78 2.82

   High PPR 0.70 0.71 0.63 0.80 0.74 0.77
Mean closed interval 3.93 4.03 4.48 3.28 3.53 3.62
Median closed interval 3.36 3.36 3.99 2.77 2.94 3.01

Period analysis Cohort analysis

UNADJUSTED ESTIMATES

ADJUSTED ESTIMATES

Table 8: Unadjusted and adjusted estimates of parity progression ratios and mean and median closed birth 
intervals for progression from second birth to third birth (2-3): 1993, 1998, and 2003 DHS surveys, 
Philippines



1988-92 1993-97 1998-02 1993 1998 2003

Residence
   Urban PPR 0.70 0.59 0.60 0.81 0.72 0.71

Mean closed interval 3.70 3.66 4.02 3.34 3.42 3.55
Median closed interval 3.13 3.13 3.42 2.90 2.96 3.01

   Rural PPR 0.77 0.71 0.68 0.86 0.84 0.83
Mean closed interval 3.55 3.50 3.90 3.20 3.18 3.29
Median closed interval 2.98 2.97 3.30 2.81 2.79 2.83

Education
   Low PPR 0.80 0.73 0.73 0.84 0.88 0.73

Mean closed interval 3.50 3.45 3.81 3.29 3.12 3.81
Median closed interval 2.95 2.94 3.23 2.87 2.76 3.23

   Medium PPR 0.71 0.67 0.65 0.58 0.75 0.65
Mean closed interval 3.69 3.55 3.96 3.76 3.41 3.96
Median closed interval 3.12 3.02 3.37 3.29 2.96 3.37

   High PPR 0.64 0.53 0.52 0.84 0.59 0.52
Mean closed interval 3.82 3.72 4.15 3.29 3.65 4.15
Median closed interval 3.24 3.21 3.55 2.87 3.20 3.55

Residence
   Urban PPR 0.70 0.60 0.61 0.82 0.74 0.72

Mean closed interval 3.74 3.62 3.96 3.24 3.27 3.49
Median closed interval 3.10 3.02 3.35 2.81 2.85 2.94

   Rural PPR 0.75 0.68 0.65 0.83 0.81 0.79
Mean closed interval 3.54 3.47 3.96 3.31 3.36 3.34
Median closed interval 3.00 2.99 3.34 2.91 2.89 2.89

Education
   Low PPR 0.81 0.72 0.73 0.90 0.86 0.86

Mean closed interval 3.58 3.58 3.95 3.12 3.08 3.31
Median closed interval 3.06 3.03 3.43 2.76 2.76 2.84

   Medium PPR 0.70 0.66 0.65 0.78 0.75 0.74
Mean closed interval 3.58 3.46 3.93 3.44 3.41 3.49
Median closed interval 2.97 3.01 3.28 3.02 2.96 2.95

   High PPR 0.64 0.53 0.52 0.66 0.61 0.59
Mean closed interval 3.84 3.60 3.99 3.69 3.73 3.63
Median closed interval 3.21 2.96 3.37 3.17 3.16 3.16

Period analysis Cohort analysis

UNADJUSTED ESTIMATES

ADJUSTED ESTIMATES

Table 9: Unadjusted and adjusted estimates of parity progression ratios and mean and median closed birth 
intervals for progression from second birth to third birth (3-4): 1993, 1998, and 2003 DHS surveys, 
Philippines



1988-92 1993-97 1998-02 1993 1998 2003

Residence
   Urban PPR 0.65 0.60 0.57 0.72 0.69 0.66

Mean closed interval 3.31 3.47 3.59 3.12 3.30 3.35
Median closed interval 2.94 3.03 3.19 2.79 2.91 2.95

   Rural PPR 0.73 0.70 0.68 0.81 0.79 0.77
Mean closed interval 3.17 3.32 3.42 2.95 3.10 3.15
Median closed interval 2.84 2.90 3.03 2.67 2.77 2.80

Education
   Low PPR 0.74 0.73 0.71 0.82 0.80 0.79

Mean closed interval 3.16 3.27 3.37 2.96 3.10 3.14
Median closed interval 2.83 2.87 2.98 2.68 2.77 2.80

   Medium PPR 0.67 0.61 0.60 0.69 0.71 0.67
Mean closed interval 3.28 3.46 3.55 3.20 3.27 3.35
Median closed interval 2.92 3.02 3.15 2.85 2.89 2.95

   High PPR 0.45 0.50 0.47 0.52 0.57 0.53
Mean closed interval 3.54 3.60 3.72 3.43 3.48 3.53
Median closed interval 3.17 3.17 3.31 3.03 3.07 3.12

Residence
   Urban PPR 0.65 0.62 0.58 0.74 0.70 0.67

Mean closed interval 3.23 3.43 3.37 3.11 3.24 3.26
Median closed interval 2.86 3.04 3.01 2.76 2.87 2.89

   Rural PPR 0.71 0.68 0.67 0.78 0.78 0.76
Mean closed interval 3.22 3.34 3.57 2.97 3.14 3.21
Median closed interval 2.88 2.92 3.14 2.70 2.79 2.84

Education
   Low PPR 0.73 0.71 0.69 0.81 0.79 0.78

Mean closed interval 3.13 3.19 3.27 2.96 3.11 3.12
Median closed interval 2.80 2.84 2.95 2.67 2.78 2.80

   Medium PPR 0.69 0.63 0.60 0.71 0.72 0.68
Mean closed interval 3.37 3.68 3.69 3.24 3.27 3.37
Median closed interval 3.03 3.14 3.22 2.90 2.89 2.96

   High PPR 0.46 0.51 0.48 0.53 0.58 0.55
Mean closed interval 3.49 3.51 3.68 3.34 3.43 3.50
Median closed interval 2.91 3.21 3.18 2.93 2.93 2.95

Period analysis Cohort analysis

UNADJUSTED ESTIMATES

ADJUSTED ESTIMATES

Table 10: Unadjusted and adjusted estimates of parity progression ratios and mean and median closed birth 
intervals for progression from fourth or higher order birth to next birth (4+ to 5+): 1993, 1998, and 2003 DHS 
surveys, Philippines



1988-92 1993-97 1998-02 1993 1998 2003

Residence
   Urban Unadjusted 2.97 2.60 2.51 4.56 3.73 3.73

Adjusted 3.03 2.62 2.55 4.67 3.87 3.79

   Rural Unadjusted 4.34 4.08 3.63 6.35 5.81 5.38
Adjusted 3.88 3.79 3.34 5.66 5.20 4.90

Education
   Low Unadjusted 4.85 4.39 4.03 6.60 6.12 5.34

Adjusted 4.54 3.72 3.78 6.59 5.69 5.52

   Medium Unadjusted 3.58 3.26 3.09 3.98 4.40 3.97
Adjusted 3.54 3.17 3.00 4.58 4.36 4.18

   High Unadjusted 2.14 2.28 2.09 3.14 2.65 2.68
Adjusted 2.33 2.54 2.25 3.11 2.98 2.95

Residence
   Urban Unadjusted 3.70 3.17 2.88 4.99 4.16 4.03

Adjusted 3.73 3.20 2.90 5.09 4.31 4.08

   Rural Unadjusted 4.69 4.25 3.76 6.59 6.11 5.58
Adjusted 4.36 4.00 3.53 5.98 5.59 5.19

Education
   Low Unadjusted 5.10 4.59 4.07 6.77 6.29 5.44

Adjusted 5.03 4.23 3.94 6.94 6.04 5.79

   Medium Unadjusted 4.00 3.60 3.25 4.23 4.71 4.11
Adjusted 4.08 3.62 3.20 4.89 4.70 4.33

   High Unadjusted 2.94 2.80 2.55 3.79 3.25 3.17
Adjusted 2.93 2.89 2.60 3.46 3.36 3.28

Period analysis Cohort analysis

TOTAL FERTILITY RATES

TOTAL MARITAL FERTILITY RATES

Table 11: Unadjusted and adjusted values of the total fertility rate and the total marital fertility rate, calculated 
from unadjusted and adjusted parity progression ratios: 1993, 1998, and 2003 DHS surveys, Philippines

Note: TFRs and TMFRs in this table are calculated from PPRs in Tables 5-10.



Measure 
in which
change is Baseline
decomposed Residence Education Residence Education hazard Residual            Total

pB -1.0 -4.4 -14.6 -12.0 134.2 -2.2 100.0 (0.06)
pM 0.6 -0.3 -8.8 -29.1 142.7 -5.1 100.0 (-0.03)
p1 0.8 10.0 40.7 -27.7 72.8 3.4 100.0 (-0.06)
p2 -0.4 15.6 -1.0 1.4 83.4 1.0 100.0 (-0.08)
p3 0.2 13.0 -6.1 2.1 81.3 9.5 100.0 (-0.10)
p4+ -3.5 13.7 22.6 -0.3 60.3 7.2 100.0 (-0.06)

TFR -0.9 21.3 26.4 -7.5 64.7 -4.2 100.0 (-0.51)
TMFR -1.0 13.8 14.0 -9.7 85.7 -2.8 100.0 (-0.85)

100.0

pB 6.9 -63.9 167.7 65.6 -53.2 -23.1 100.0 (0.01)
pM 5.4 99.9 210.6 -232.1 59.1 -42.9 100.0 (-0.00)
p1 1.9 2.9 -20.2 11.6 84.9 18.9 100.0 (-0.03)
p2 -0.2 20.3 -26.3 -15.7 101.3 20.5 100.0 (-0.04)
p3 1.1 27.8 38.7 -0.2 26.1 6.4 100.0 (-0.08)
p4+ -2.3 38.3 45.2 -21.2 42.1 -2.1 100.0 (-0.05)

TFR -1.0 36.3 22.8 -20.2 63.1 -1.1 100.0 (-0.85)
TMFR -0.7 32.6 28.5 -16.8 59.1 -2.7 100.0 (-0.94)

COHORT ANALYSIS

Component due to change in:
Composition by: Effect of:

PERIOD ANALYSIS

Table 12: Decomposition of change in the total fertility rate and ts components between the 1993 
and 2003 surveys: Method 1 (method of varying one thing at a time) (percent)

Notes: The underlying CLL models all have residence and education as time-varying predictor variables 
and a cubic specification of time-varying effects. Starting and ending values of the fertility measures to be 
decomposed were obtained by substituting interval-specific mean values of U (representing residence) and 
M and H (representing education) in the underlying CLL model equations. In the period analysis, fertility 
measures pertain to the 5-year period immediately preceding each survey. In the cohort analysis, cohorts 
are defined as women age 40-49 at the time of each of the two surveys. Numbers in parentheses in the last 
column indicate change in the PPR or TFR or TMFR between the two surveys.



Measure
in which
change is Baseline
decomposed Residence Education Residence Education hazard                     Total

pB -1.0 -14.1 -16.0 -12.3 143.3 100.0 (0.06)
pM 0.6 -0.2 -6.8 -34.4 140.8 100.0 (-0.03)
p1 0.8 10.0 43.3 -32.6 78.5 100.0 (-0.06)
p2 -0.4 15.5 0.2 5.3 79.4 100.0 (-0.08)
p3 0.2 13.0 -5.7 2.2 90.3 100.0 (-0.10)
p4+ -3.5 13.7 21.5 8.4 59.9 100.0 (-0.06)

TFR -0.9 26.1 27.0 -4.5 52.3 100.0 (-0.51)
TMFR -1.0 13.9 14.2 -7.6 80.5 100.0 (-0.85)

pB 6.9 -63.0 173.8 60.8 -78.6 100.0 (0.01)
pM 5.4 99.8 219.2 -310.7 86.3 100.0 (-0.00)
p1 1.9 3.0 -20.5 11.7 104.0 100.0 (-0.03)
p2 -0.2 20.2 -26.7 -16.6 123.3 100.0 (-0.04)
p3 1.1 27.9 43.2 -1.5 29.3 100.0 (-0.08)
p4+ -2.3 38.3 44.3 -26.8 46.6 100.0 (-0.05)

TFR -1.0 36.4 19.4 -19.3 64.5 100.0 (-0.85)
TMFR -0.7 32.8 25.1 -16.2 59.0 100.0 (-0.94)

COHORT ANALYSIS

Component due to change in:
Composition by: Effect of:

PERIOD ANALYSIS

Table 13: Decomposition of change in the total fertility rate and ts components between the 1993 and 
2003 surveys: Method 2 (method of cumulatively varying one thing at a time) (percent)

Note: See notes to Table 12.



Figure 1: Lexis diagram illustrating censoring when setting up the expanded data 
file for calculating a multivariate period life table for progression from 15th birthday 
to first marriage,  based on retrospective data from a survey in 2003

Notes: The shaded area, which is 5 years wide and 25 high, represents the relevant period of 
exposure to the risk of first marriage. 45-degree lines are life-lines for particular individuals. 
Imagine that each life-line is divided into one-month segments, corresponding to person-
months in the expanded data set. Person-months falling outside the shaded area are censored 
and not included in the expanded data set. 
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