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THE MODAL AGE AT DEATH AND THE SHIFTING

MORTALITY HYPOTHESIS.

July 15, 2005

Abstract

A mathematical expression for the modal age at death is used to calculate the number of

deaths at this age. Models that capture change in mortality over time show an asymptotic

approximation towards a constant number of deaths, and survivors, at the modal age. The

bell-curve for the number of deaths centered around the modal age at death is also constant,

while the modal age moves to higher ages over time. These findings are confirmed through

applications to populations with historical mortality data. Results reveal a need to revise the

rectangularization hypotheses of approaching a limit for longevity.
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INTRODUCTION

Life expectancy, or the mean of the distribution of deaths, is the indicator most frequently used to

describe this distribution. Lexis (1878) considered that the distribution of deaths consisted of three

parts: a decrease in the high number of deaths with age after birth to account for infant mortality;

deaths that follow a bell-curve centered around the late modal age at death (referred to hereafter

as modal age at death), accounting for senescent mortality; and premature deaths that occur

infrequently at young ages between the high infant mortality and senescent deaths. In a regime

with a high level of infant mortality, life expectancy will be within the age range of premature

deaths. The early stages of the epidemiological transition (Omran 1971) are characterized by a

reduction in infant mortality. These abrupt changes in infant mortality have been captured very

accurately with the rapid increase in life expectancy over time.

Currently, mortality is concentrated at older ages in most countries. Life expectancy has slowed

down its rapid increase and approached the modal age at death. Therefore, a study of modal age at

death provides an opportunity to understand changes in the distribution of deaths, and to explain

the change in mortality at older ages (Cheung et al. 2005; Kannisto 2000; Kannisto 2001; Robine

2001).

This article contains a review of the modal age at death, the number of survivors and deaths at

this modal age, and the concentration of deaths around this measure. Analytical expressions for the

increase in longevity, seen as the change in modal age at death, and variability of age at death are

found. As pointed out by Wilmoth and Horiuchi (1999), these expressions can be used in criticism

of the rectangularization of the survival curve hypothesis proposed by Fries (1980), and to provide

an alternative perspective on aging.

The paper is divided into four parts. The first section introduces the reader to the formal

definition of modal age at death, denoted in this paper by the letter M . The second section shows

the constancy of survivors and number of deaths under certain mortality models. The third part

contains an examination of the concentration of deaths around the modal age. Finally, applications

to human populations with historical data are presented.
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MODAL AGE

Let the force of mortality at age a and time t be denoted as µ(a, t). We can write the life table

survivorship function at age a under the rates at time t as

`(a, t) = e−
∫ a
0 µ(x,t)dx. (1)

If the radix of the life table is one, i.e., `(0, t) = 1, then `(a, t) is the life table probability of surviving

from birth to age a.

The most commonly known measure of mortality is life expectancy. In the life table context, life

expectancy at age a and time t is normally calculated as the person-years lived above age a divided

by the number surviving to age a. An alternative expression for life expectancy is the mean of the

distribution of deaths. Let d(a, t) be the density function describing the distribution of deaths (i.e.,

life spans) in the life table population at age a and time t; then life expectancy can be expressed as

e(0, t) =

∫ ω

0
ad(a, t)da∫ ω

0
d(a, t)da

=

∫ ω

0
ad(a, t)da

`(0, t)
=

∫ ω

0

ad(a, t)da, (2)

where ω is the highest age attained and the denominator is equal to 1. For every given age the

distribution of deaths is the product of the survival function up to that age multiplied by the force

of mortality, d(a, t) = `(a, t)µ(a, t).

Figure 1 shows the distribution of life table deaths for the Netherlands at the beginning, middle,

and end of the twentieth century.

[FIGURE 1 HERE]

Also included in Figure 1 are the life expectancy, modal age, and mode number of deaths after age

2 in 1900, 1950, and 2000. Here it is possible to appreciate how life expectancy is found at age 48.5

in 1900, while most of the deaths in this year are concentrated at ages below 5 and around the late

modal age of 76.4. At the turn of the century in year 2000, life expectancy reached a value of 78.4

years, almost double that of 1900, and reduced markedly its distance to the modal age, which has

moved to 84.5. The modal number of deaths moved from 2.4% of all deaths in 1900 to be 4.2% in

2000.

3



In industrialized countries where infant mortality has dropped dramatically, the modal age of

the distribution of deaths is found at older ages. More generally, for any population the modal age

at death after age 5 can be calculated as the age at which the derivative of d(a, t) is equal to zero.

To simplify the notation, let the partial derivative of a variable with respect to age be denoted by

a dot on top of the variable and an acute accent over the variable to represent the relative partial

derivative with respect to age. This notation has proven to be very helpful in reducing the clustering

of equations (Canudas-Romo and Schoen 2005; Vaupel and Canudas-Romo 2002; 2003). Assuming

continuity over age in functions d(a, t), `(a, t) and µ(a, t), the partial derivative of the distribution

of deaths with respect to age is

ḋ(a, t) = ˙̀(a, t)µ(a, t) + `(a, t)µ̇(a, t) = `(a, t)µ(a, t)[´̀(a, t) + µ́(a, t)]

by substituting the definition of the survival function in equation (1) we obtain

ḋ(a, t) = d(a, t)[µ́(a, t)− µ(a, t)]. (3)

Equation (3) is equal to zero when d(a, t) or [µ́(a, t) − µ(a, t)] are equal to zero. In the first case

there are no deaths, and therefore also no modal age. In the second case, it implies that at the

modal age M the force of mortality equals its relative derivative with respect to age,

[µ́(a, t) = µ(a, t)]. (4)

To further add to this special age in the distribution of deaths, Wilmoth and Horiuchi (1999) showed

that the modal age is also the inflection point in the survival curve.

Model populations provide a useful way to examine changes in mortality. In the next section we

show the change over time in modal age in three types of mortality models, that have been adopted

by demographers as good approximations of force of mortality. The three mortality models are the

Gompertz Mortality Change Model, the Logistic Model and the Siler Mortality Change Model.
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MORTALITY MODELS

Gompertz Mortality Change Model

Bongaarts and Feeney (2002; 2003) have stimulated a new debate about how to interpret period life

expectancy when rates of death vary over time. The parallel shift in adult mortality analyzed by

Bongaarts and Feeney can be characterized by a Gompertz mortality change model (Vaupel 1986;

Vaupel and Canudas-Romo 2000; 2003). Their formulation is an extension of the Gompertz (1825)

model of mortality, which has a changing initial force of mortality component,

µ(a, t) = µ(0, t)eβa, (5)

where µ(0, t) reflects the value of the rate of mortality decrease over time; parameter β > 0 is the

fixed rate of mortality increase over age.

Substituting the Gompertz mortality change model in equation (4) gives us the modal age for

this model when the following condition is fulfilled

β = µ(0, t)eβa,

or in terms of the modal age a = M ,

M =
ln(β)− ln[µ(0, t)]

β
. (6)

The survival function for this model is obtained by substituting the force of mortality of equation

(5) in equation (1):

`(a, t) = exp[µ(0, t)
(1− eβa)

β
], (7)

and at the value of the modal age, (6), the survival function can then be simplified to

`(M, t) = exp[
µ(0, t)

β
− 1], (8)

with a maximum number of deaths of

d(M, t) = `(M, t)µ(M, t) = βexp[
µ(0, t)

β
− 1]. (9)
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Bongaarts and Feeney (2002; 2003) showed that the value of µ(0, t) declines over time. When

the reduction in mortality is almost negligible, and the value of µ(0, t) approaches zero, equations

(8) and (9) decrease to a constant number of survivors

lim
µ(0,t)→0

`(M, t) = e−1 = 0.37,

and thus the numbers of deaths is d(M, t) = βe−1. However, the modal age at death increases

to infinity. Therefore, under this model the rectangularization process of the survival curve has

stopped completely. Instead, a shift occurs in the modal age towards advanced ages.

A particular case of equation (5) is where the µ(0, t) is parameterized, and the force of mortality

at age 0 and time t is µ(0, t) = eα−ρt (Schoen et al. 2004a; Vaupel 1986). The force of mortality at

age a and time t is defined as

µ(a, t) = eα−ρt+βa, (10)

where the α is a constant that reflects the value of µ(0, 0) and parameter ρ is the rate of mortality

decrease over time.

In this model of continuous mortality decline we take β = 0.1, the conventional value for the

pace of mortality increase over age. Reasonable values for contemporary western low mortality

populations are α = −11 and ρ = 0.01. Using these values and equations (6) and (10), we obtain

a modal age for time t of M = 87 + .1t, i.e., increasing one year of age every ten calendar years.

However, the survivors and number of deaths in (8) and (9) change very modestly over time, reaching

their limit values of `(M) = e−1 and d(M) = βe−1 = 0.037, respectively.

Figure 2 shows the survival function and distribution of deaths in the continuous declining

mortality model (10) over 400 years.

[FIGURE 2 HERE]

As shown in Figure 2 the modal age increases every 200 years by 20 years of age. However, the

number of survivors and deaths at the modal age remain constant. Life expectancy for this model

moves at a similar speed as modal age at death, but starts at a lower value of 82 and reaches a life

expectancy of 122 after 400 years. (Values underlying Figure 2 are shown in Table 2.)
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The shifting model observed by Bongaarts and Feeney (2002) in mortality has many implications

for the survival function and the distribution of deaths. These authors have advanced some possible

implications for this type of shift in mortality, as the need to find alternative measures to life

expectancy. As shown here, for populations where mortality is concentrated at adult ages the

modal age at death comes as a good candidate for finding out how long do we live? This model is

not unique, however. These results are tested in the next subsections under alternative mortality

models.

Logistic Model

The logistic model has been used in place of the Gompertz model to account for the overestimation of

mortality at older ages (Thatcher et al. 1998; Thatcher 1999). Bongaarts (2005) studied separately

the two components of the logistic model, senescent and background mortality, with this second

term not varying over age. Similarly, here we will examine only the senescent component, which

changes over age. The force of mortality is here expressed as

µ(a, t) =
eα(t)+β(t)a

1 + eα(t)+β(t)a
, (11)

where the parameters α(t) for the level of mortality and β(t) for the rate of increase in mortality

change over time. The survival function for this model is obtained from equation (1) as

`(a, t) =

[
1 + eα(t)

1 + eα(t)+β(t)a

] 1
β(t)

. (12)

The corresponding modal age for the logistic equation (11) can be found by applying the relation

in equation (4) as

M =
ln[β(t)]− α(t)

β(t)
, (13)

and the number of deaths at this modal age is

d(M, t) = `(M, t)µ(M, t) =

[
1 + eα(t)

1 + β(t)

] 1
β(t) β(t)

1 + β(t)
. (14)

Bongaarts (2005) examined change over time for eα(t) and β(t) parameters in several countries in

the second half of the twentieth century. During this time, the first parameter decreased to levels
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around α(t) = −11, while β(t) has remained almost constant at 0.1. According to these values, the

number of deaths at the modal age is 0.035, just slightly less than the results for the Gompertz

mortality change model.

If further decline is observed in the parameter for mortality level over time, then the value of

eα(t) will continue to decrease, which is the same as saying that the value of α(t) becomes much

bigger with a negative value. Equation (14) then depends only on the measure of the rate of increase

in mortality with age. The survivors and distribution of deaths follow similarly shifting patterns

over time to those observed in Figure 2, because modal age at death continues to increase with

α(t). As shown by Thatcher et al. (1998) and Thatcher (1999), most mortality models fall between

the overestimation of the Gompertz model and the logistic curve. Therefore, this constant value of

deaths at modal age is likely to appear in those models as well.

Table 1 presents the modal age and value at death using equations (13) and (14) and the logistic

parameters presented by Bongaarts (2005).

[Table 1 HERE]

Similar to the comparison of life expectancies between sexes, here the modal values can be con-

trasted. As observed in Table 1, females have higher modal age and higher modal value at death

than their male counterparts. The largest difference between males’ and females’ modal ages is

found in Finland, while the smallest occurs in Japan. The largest difference between the sexes in

modal values is seen in Finland, while the smallest is in England and Wales.

The Siler Mortality Change Model

The mortality models presented above assume that infant mortality has already declined and the

distribution of deaths is only composed of deaths at senescent age. However, the first stages of the

epidemiological transition were characterized by a decline in infant mortality, which was followed

later by declines at advanced ages. Therefore, to have a complete understanding of change over

time in modal age at death at advanced ages and its modal value, it is necessary to include infant
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mortality and the premature component of the distribution of deaths.

The Gompertz model with a continuous rate of decline of equation (10), can be extended to

include these two additional components. A proposal by Canudas-Romo and Schoen (2005) com-

bines the mortality model used by Siler (1979) and parameters that account for improvement in

mortality over time

µ(a, t) = eα1−β1a−ρ1t + eα2−ρ2t + eα3+β3a−ρ2t, (15)

where three constant terms reflect the value of µ(0, 0) = eα1 + eα2 + eα3 ; the parameters β1 and β2

are fixed rates of mortality decline and increase over age, respectively, and account for infant and

senescent mortality; the parameters ρ1 and ρ2 are constant rates of mortality decrease over time.

Parameters αs and βs come from the Siler model, while the ρs are used in Gompertz models with

a continuous rate of decline (Schoen et al. 2004a; Vaupel 1986). In the remaining text we refer to

equation (15) as the Siler mortality change model.

In the model we begin with a fairly high infant mortality (203 per thousand), resulting from

the values of eα1 = 0.2, eα2 = 0.003 and eα3 = 0.0002. The early decline over age proceeds at a

pace of β1 = 1 with an overall increase with age at a rate of β2 = 0.1. These values for parameters

α and β have been adapted from a comparison of the Siler model with the different model life

tables elaborated by Coale and Demeny (Gage and Dyke 1986). At time 0, period life expectancy

is 38.5, the modal age at death at advanced ages is 62, and the modal value at this age is 0.023

deaths. These values approach those observed in populations with historical data. For example,

in Sweden in the year 1800 infant mortality was 227 per thousand, life expectancy 32.19 years and

the late modal age 71. For the pace of mortality improvement we have chosen ρ1 = 0.015 and

ρ2 = 0.01. These values correspond to a 1.5% decline at younger ages and mortality improvement

of one percent at older ages. The decline at younger ages in several European countries occurred at

an even faster rate (Woods et al. 1988, 1989). The rate of one percent is below the current average

mortality decline in the West.

Figure 3ab show the change in survivors, distribution of deaths, modal age and modal number

of deaths over time under the Siler mortality change model.
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[FIGURE 3a & 3b HERE]

As observed in Figure 3ab, the modal age at death at advanced ages increases linearly, while the

modal value increases asymptotically to its maximum value. Prevented deaths in infancy have very

little probability of occurring during the premature period before the modal age. Therefore, the

new survivors add to the distribution of deaths of senescent mortality and increase the modal value

of deaths. (Values underlying Figures 3ab are shown in Table 2.)

The increase in the late modal age at death over the twentieth century has been observed in

several countries (Cheung et al. 2005; Kannisto 2001). For example, in figures for France reported

by Robine (2001), there are almost linear trends in this measure for the entire century. However,

the number of deaths at this age or, as studied by Robine, the verticalization of the survival curve,

began a slow downward trend in the 1950s. This discontinuity during the second half of the century

is in fact noted by Robine. Nevertheless, findings from the analysis reported here provide important

information about what is happening with the modal number of deaths. To further support the

results from the above models, the concentration of deaths around the modal age is analyzed in the

next section.

CONCENTRATION OF THE NUMBER OF DEATHS

AROUND THE MODAL AGE AT DEATH

Standard deviations around the late modal age at death have been used to study the dispersion

of deaths under the bell-curve centered in the modal age at death (Cheung et al. 2005; Kannisto

2001). To prove the constancy of the concentration of deaths around the mode here we study two

measures: the standard deviation from the mode, and the number of years needed before the modal

age to obtain 90%, 75%, and 50% of deaths.

Let the standard deviation from the modal age at death, SDM , be defined as

SDM =

√∫ ω

0

(a−M)2d(a, t)da, (16)
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where the denominator of this measure is equal to one,
∫ ω

0
d(a, t)da = 1.

Table 2 presents the modal age and value at death, and the standard deviation from the mode

for the Gompertz mortality change model of Figure 2 and equation (10), and the Siler mortality

change model of Figure 3 and equation (15).

[TABLE 2 HERE]

As observed in Table 2 under both models the modal age at death increases linearly. The modal

value and SDM are constant at values of 0.037 and 14.02 for the Gompertz mortality change model.

The modal value for the Siler mortality change model increases over time reaching the Gompertz’

value of 0.037 after 400 years. However, for the Siler mortality change model the standard deviation

never reaches the value of 14.02 of its Gompertz counterpart, having a minimum value of 14.72.

Let K be the proportion of the number of deaths around the modal age at death that it is desired

to find. This is equivalent to looking at the area under the curve of the distribution of deaths that

goes from age M −A to M +A, and provides the total number of K deaths. The number of deaths

in this interval can also be calculated as the difference between those surviving up to age M − A

minus those surviving to age M + A,

K =

∫ M+A

M−A

d(a, t)da = `(M − A, t)− `(M + A, t). (17)

Similar quantities that do not, however, depend on the modal age, are the interquartile range

based on the values of 75% and 25% of survivors (Wilmoth and Horiuchi 1999) or the compression

measures used by Kannisto (2000). In the rest of the analysis we use equation (17), because we

intend to study the concentration of deaths around the modal age.

Equation (17) is easily generalized to the case involving a different number of years before and

after the modal age. An interesting case is the one observed with a continuous declining mortality

model of the type in (10). Over time the number of survivors at the modal age becomes a constant,

(8), which is equivalent to the number of deaths from the modal age until the last age attained by

a person, e−1 = 0.37. Given that the value for the remaining number of deaths after the modal age

does not change, the desired proportion K is obtained from the lower limit age. The lower limit
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age in the distributions of deaths may be calculated from equation (17) as K = `(M − A, t), and

substituting (7) a value for the interval A is obtained:

A = M − ln [1− βln[K]eρt−α]

β
. (18)

This value for the lower limit of the interval is almost a constant. In the initial stages of the model

the age M −A moves slightly slower than the modal age but this difference becomes negligible over

time. The value needed to have 90% of the deaths is A = 22.5 years before the modal age, while

75% requires A = 12.5 and 50% only A = 3.7. This constant result confirm the distribution of

deaths observed in Figure 2.

In the Siler mortality change model shown in Figure 3 and equation (15), at time 0 the number

of years before the modal age at death to cover 90%, 75% and 50% of deaths are 86.84, 84.84,

and 17.84, respectively. After 400 years these values for the intervals for the different proportions

decreases to levels slightly higher than those mentioned earlier for the Gompertz mortality change

model.

This analysis confirms that the rectangularization process of mortality compression dramatically

decreases once infant mortality has become a minor factor (Kannisto 2000; Wilmoth and Horiuchi

1999). However, our results further the rectangularization debate by suggesting that the current

situation might be the beginning of a shifting trend in mortality.

Cheung et al. (2005) concluded that the transformations occurring in the survival function for

Hong Kong may be interpreted as resistance to human longevity. However, as shown in our analysis

of the modal age at death, the changes in Hong Kong may also be seen as a transition towards a

shifting mortality era. In this era the rectangularization process has stopped while the modal age

at death keeps moving towards older ages, taking with it all of the deaths concentrated around it.

For example, as shown in Table 2 in Cheung et al. (2005), over a 25-year period in Hong Kong, the

modal ages for females and males move 6.3 and 7.8 years to older ages, respectively. In this period,

the standard deviation shows minor reductions.

To this point we have analyzed the distribution of deaths and modal age at death under mortality

model assumptions. In the next section we contrast the results presented above with those for
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changes in human populations.

FIVE INDUSTRIALIZED COUNTRIES: AN ILLUSTRA-

TION

Figure 4ab show the change over time in the modal age at death as suggested by Kannisto (1996),

and the modal value at death in England and Wales, Japan, The Netherlands, Sweden and the

United States.

[FIGURE 4a & 4b HERE]

Figure 4a shows the common linear trend in the modal age at death for these five countries. Partic-

ularly interesting is Japan, which started with low values for modal age at death but moved rapidly

to become the country with the highest value. The Netherlands, Sweden, and the US followed

for modal age values at the end of the twentieth century, but their pace of increase is moderate

compared to Japan’s. England and Wales changed very modestly during this period, continuing

to exhibit the lowest values for this group of countries. These results parallel the changes in life

expectancy where Japan is the leader.

Figure 4b shows the logistic trend in the number of deaths at the modal age for the five selected

countries. The trend over time is less clear than for modal age. However, the increase from low

to high values and leveling off in the second half of the century are clear. The last decade of the

century reveals unexpected changes, which include a decline for Japan and increase for the rest of

the countries. An analysis of these changes is beyond the scope of this article.

Table 3 presents the modal age and modal number of deaths, and the number of years needed

before the modal age to obtain 90%, 75%, and 50% of deaths, as well as the standard deviation

from the mode, for these five industrialized countries from 1970 to 1995. For the year 1995, or

2000 if available, estimated values for α and β have been calculated under a Gompertz model

assumption as in (10) for ages 30 to 90. These parameters provide us with the information we
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need to calculate estimates of the modal age and value at death, the intervals needed to obtain the

different proportions and the standard deviation from the mode for the last year, whether 1995 or

2000.

[TABLE 3 HERE]

All of the countries included in Table 3 show common trends. An increase in the modal age and

modal value at death is found, with the second changes less clear for Japan. The three age intervals

studied and the SDM decline over time, although an increase is observed in the US in 1995. The

estimated results using the Gompertz mortality change model are slightly below and above the

values observed in 1995 and 2000. Most of the differences between observed and estimated results

in 1995 and 2000 are due to mortality at younger ages that is not accounted for in the estimation.

These results suggest that some countries might be nearer than others to achieve the shifting

mortality era. As already shown in Figure 4a, the modal age at death in England and Wales has

remained behind that for the rest of the studied countries. Table 3 shows that this is reinforced

with an overestimation of the modal age at death in this country. The values for the age intervals

and SDM in the United States are much higher than for the other countries. In other words, much

work is needed in health matters in the US to achieve the shifting mortality era discussed in this

article.

CONCLUSION

Modal age at death is an alternative measure in examining change over time in mortality. We

have shown in this study that a shifting mortality scenario, where the compression of mortality has

stopped, may be realistic.

Mortality models, adopted as good approximations of the force of mortality, show that the modal

age at death increases over time. However, the number of survivors and deaths at modal age move

toward constant levels. The distribution of deaths around the modal age and standard deviation
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from the mode also show a constant concentration–almost a reallocation–of the characteristic bell-

curve distribution around the modal age at death towards more advanced ages.

Populations with historical mortality data support the early changes illustrated by the models.

However, existing variations among the countries included in this analysis reveals the need to

conduct detailed future analyses for each country. Further studies of the shape of distribution of

deaths by cause of death could improve our understanding of the dynamics of mortality.

Finally, the rectangularization of the survival curve shows change from a wide dispersion of

deaths to a concentration in the number of deaths. Although it describes the mortality changes

observed in the last half of the century well, it might only be a temporary phenomenon. The shifting

mortality hypothesis studied in this article might also be transitory, yet it brings to light alternative

processes that might be expected if the current mortality changes maintain their pace.
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Table 1. Parameters of the Logistic Model for Adult Mortality and the Modal Age and Modal Value at Death in 14 countries.

Females Males
� � Modal Age Modal Value � � Modal Age Modal Value

Austria -11.7 0.117 81.3 0.0407 -10.4 0.106 77.1 0.0371
Canada -11.1 0.106 83.3 0.0371 -10.1 0.100 78.3 0.0351
Denmark -11.1 0.108 82.1 0.0377 -10.5 0.106 78.2 0.0371
England and Wales -11.2 0.109 82.1 0.0380 -10.5 0.107 77.0 0.0374
Finland -11.8 0.119 81.3 0.0413 -9.8 0.099 75.2 0.0347
France -11.7 0.115 82.7 0.0400 -10.1 0.101 77.1 0.0354
Italy -11.8 0.118 82.1 0.0410 -10.6 0.107 78.0 0.0374
Japan -11.8 0.118 81.8 0.0410 -10.7 0.108 78.6 0.0377
Netherlands -11.8 0.116 83.0 0.0404 -10.8 0.109 79.0 0.0381
Norway -11.9 0.117 83.7 0.0407 -10.8 0.109 79.1 0.0381
Sweden -11.9 0.117 83.2 0.0407 -11.1 0.112 79.7 0.0390
Switzerland -12.0 0.120 82.3 0.0417 -10.9 0.111 78.6 0.0387
United States -10.7 0.101 83.6 0.0354 -9.7 0.094 77.6 0.0331
West Germany -11.7 0.116 82.1 0.0404 -10.4 0.105 78.0 0.0367
Average -11.5 0.114 81.9 0.0397 -10.4 0.105 77.3 0.0367
Source: The logistic parameters derive from Bongaarts (2005) average of annual estimates for all available years from 1950 to 2000.



Table 2. Modal Age and Value at Death, and Standard Deviation from the Mode, SDM, for a Gompertz 
Mortality Change Model with Parameters � = -11, � = 0.1 and � = 0.01 and a Siler Mortality Change 
Model with Parameters��1 = -1.6, �1 = 1, �1 = 0.015, �2 = -5.8, �3 = -8.5, �3 = 0.1 and �3 = 0.01

Gompertz Mortality Change Model Siler Mortality Change Model
Modal Modal Standard Modal Modal Standard 

Year Age Value Deviation Age Value Deviation
0 87 0.037 14.02 86 0.021 50.07
100 97 0.037 14.02 97 0.031 33.26
200 107 0.037 14.02 107 0.035 22.98
300 117 0.037 14.02 117 0.036 17.94
400 127 0.037 14.02 127 0.037 15.72



Table 3. Five Year Moving Average for the Modal Age and Highest Value at Death, Number of Years Before
the Modal Age Needed to Obtain 90%, 75% and 50% Deaths, From 1970 to 1995 and 2000 if Available.
For England and Wales, Japan, the Netherlands, Sweden and the United States.

Number of Years Before the Modal Age
to Have a Proportion of Deaths of Standard Deviation

Year Modal Age Modal Value 90% 75% 50% from the Mode
England and Wales Estimated* ��= -10.46 ���= 0.096
1970 79.8 0.0332         26.8 14.8 4.8 19.13
1975 80.5 0.0334         26.5 14.5 4.5 18.64
1980 81.2 0.0343         26.2 14.2 5.2 18.07
1985 82.3 0.0336         25.3 14.3 5.3 17.51
1990 81.8 0.0338         23.8 12.8 3.8 16.76
1995 83.1 0.0355         24.1 13.1 4.1 16.39
1995* 84.5 0.0354         23.4 13.0 3.8 14.55
Japan Estimated* ��= -10.57 ���= 0.094
1970 80.7 0.0370         27.7 14.7 5.7 19.35
1975 81.4 0.0392         25.4 13.4 4.4 17.76
1980 83.0 0.0400         25.0 13.0 4.0 17.04
1985 84.7 0.0406         24.7 12.7 4.7 16.74
1990 85.7 0.0412         24.7 12.7 3.7 16.39
1995 87.5 0.0403         25.5 14.5 5.5 16.96
1995* 87.4 0.0346         23.9 13.3 3.9 14.89
Netherlands Estimated* ��= -10.80 ���= 0.099
1970 81.9 0.0360         26.9 14.9 4.9 18.85
1975 82.0 0.0356         26.0 14.0 5.0 17.91
1980 83.7 0.0352         25.7 14.7 5.7 17.93
1985 83.7 0.0359         25.7 14.7 4.7 17.24
1990 84.7 0.0361         25.7 14.7 5.7 17.24
1995 84.2 0.0376         24.2 13.2 4.2 16.37
2000 85.1 0.0398         24.1 13.1 4.1 16.09
2000* 85.6 0.0365         22.7 12.6 3.7 14.12
Sweden Estimated* ��= -10.92 ���= 0.099
1970 82.7 0.0374         26.7 14.7 4.7 18.50
1975 81.8 0.0379         25.8 12.8 3.8 17.49
1980 83.4 0.0379         26.4 14.4 5.4 17.44
1985 84.8 0.0380         25.8 14.8 5.8 17.44
1990 84.6 0.0389         24.6 13.6 4.6 16.73
1995 85.4 0.0399         24.4 13.4 4.4 15.83
2000 86.4 0.0417         23.4 12.4 4.4 15.61
2000* 86.9 0.0365         22.7 12.6 3.7 14.14
United States Estimated* ��= -9.24 ���= 0.079
1970 79.8 0.0297         31.8 16.8 5.8 21.45
1975 82.7 0.0303         32.7 18.7 6.7 21.44
1980 82.7 0.0308         30.7 16.7 5.7 20.40
1985 84.4 0.0314         30.4 17.4 6.4 20.28
1990 83.5 0.0312         29.5 16.5 4.5 19.54
1995 85.4 0.0329         31.4 17.4 6.4 19.98
1995* 84.8 0.0291         28.3 15.7 4.6 17.47
Source: Human Mortality Database (2005).
* Values of the parameters � and � are estimated from the probabilities of deaths 
between ages 30 and 90 and used in equations (6), (9), (17) and (18).



Figure 1. Life Expectancy, LE, Modal Age, M, and Modal Number of Deaths, d(M), after 
Age 2 in the Life Table Distribution of Deaths for The Netherlands in 1900, 1950 and 

2000.
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Figure 2. Survivors Function and Distribution of Deaths  for a Continuous Declining 
Mortality  Model with Parameters: ��= -11,���= 0.1�and���= 0.01.
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Figure 3b. Change over Time in the Modal Age and Modal Number of Deaths Under a 
Siler Mortality Change Model of Decline over Time: �1 = -1.6, �1 = 1, �1 = 0.015,

�2 = -5.8, �3 = -8.5, �3 = 0.1 and �3 = 0.01.
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Figure 3a. Change over Time in the Survivors and Distribution of Deaths Under a Siler 
Mortality Change Model of Decline over Time: �1 = -1.6, �1 = 1, �1 = 0.015, �2 = -5.8, 

�3 = -11, �3 = 0.1 and �3 = 0.01.
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Figure 4a. Five Year Moving Average of the Modal Age at Death for England and 
Wales, Japan, the Netherlands, Sweden and the United States, for Available Years 

between 1900 and 2000.
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Figure 4b. Five Year Moving Average of the Modal Value at Death for England and 
Wales, Japan, the Netherlands, Sweden and the United States, for Available Years 

between 1900 and 2000.
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