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WHAT CAN BE LEARNT BY STUDYING 

THE ADULT MODAL AGE AT DEATH? 
 
 
ABSTRACT 
 
Taking all the data available in the Human Mortality Database (HMD), this study 
illustrates the interest of a mode-oriented approach to longevity research, focusing on 
the most common longevity. Several indicators built from the adult modal age at death 
(M) are introduced to describe the adult longevity and its changes over time, 
examining whether an increase in the most frequent age at death is always 
accompanied by a compression of the mortality occurring above it. Comparative 
analysis with standard mortality measures (i.e. life expectancy at birth (e(0)), median, 
life expectancy at age 65 and the logarithm of the geometric mean of age-specific 
death rates between ages 65 and 99) is also presented. In this study, we show that M is 
useful not only as a measure of longevity but also in understanding and applying 
major mathematical models of mortality trajectory (i.e. the Gompertz, logistic, 
Weibull, Lexis models), using M as a parameter and investigating characteristics of 
M-related measures in those models. 
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A. INTRODUCTION 
 
We begin this study of adult longevity with a literature review (section B) concerning 
the distribution of deaths by age (i.e. the death curve or dx in a life table) since Lexis 
(1878) and Pearson (1897) through Greenwood and Irwin who challenged the Lexis’s 
proposal of stability of the normal lifetime in 1939. Later, in the 1950, Clarke 
suggested again that the natural life spans should form an invariant distribution which 
represents the ultimate or limiting form of the curve of deaths. His work has been 
further developed by Benjamin who challenged his proposal of invariant distribution 
of senescent deaths as Greenwood and Irwin did for the Lexis’s proposal (Benjamin 
1959, 1963). At the beginning of the 21st century, Kannisto (2001) revived the interest 
for the dx approach and developed his hypothesis of an “invisible wall” to the 
extension of human longevity. Following his study, Cheung (2003) and her colleagues 
(Cheung et al. 2005a and 2005b) applied the Lexis-Kannisto model to several national 
time-series and developed associated indicators. Based on these previous studies, we 
believe that, when looking at changes in human longevity (past and future), we have 
to break down the longevity question into two parts; the first part or the first question 
being: ‘How many newborn are becoming adults?’ and the second part being ‘How 
long are adult life durations?’ 
 
In section C, we present empirical observations of the modal age at death and its 
associated indicators using all the data available in the Human Mortality Database 
(HMD) by February 2006; i.e. 5032 period life tables for 26 countries, East and 
Western Germany East taken together, starting with Sweden in 1751. 
 
In section D, we perform some comparative analysis with standard mortality measures 
(i.e. two measures of overall mortality, life expectancy at birth (e(0)) and median age 
at death, and two measures of old-age mortality, life expectancy at age 65 and the 
logarithm of the geometric mean of age-specific death rates between ages 65 and 99) . 
 
In section E, we develop some mathematical formula to re-express popular mortality 
models (i.e. Gompertz, logistic, Weibull, and Lexis models) using M as a parameter, 
and investigate characteristics of M-related measures in those models. We claim that 
our approach allows a better understanding of the conventional mortality models  
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B. LITERATURE REVIEW 
 
Since a long time, actuaries and researchers in bio-medical science have been 
concerned with the length of human life. Several life table functions, such as the life 
expectancy at birth (e0), have been used to examine this question. More specifically, 
the force of mortality ( xµ ) or the probability of dying ( ) have been used to analyse 
the mortality trajectory deceleration observed at higher ages. The proportion of 
survivors ( ) has been used to assess whether the survival curve is becoming more 
rectangular and whether the deaths are compressed into a narrower band of ages. The 
final objective of these studies was to discover whether a fixed limit to human 
longevity exists. 

xq

xl

 
 
Looking for a law of mortality, by fitting mathematical functions to the death rates, 
has been the main approach in this quest since de Moivre (1756) and Gompertz 
(1825). For instance, Thiele (1871) had proposed complex mathematical relationships 
between the ages at death and the force of mortality (i.e. a decreasing Gompertz curve 
to represent childhood mortality, a normal curve in the middle range of ages, and 
another Gompertz curve to represent old-age mortality).  
 
 
However, parallel attention has been given to the distribution of deaths by age (i.e. the 
death curve or dx in a life table) as an alternative operand. Thus, Lexis pioneered in 
1878 the concept of normal life duration, characteristic of a natural and ageing 
lifetime. He divided the distribution of deaths by age in three parts: (1) a J-curve right 
after birth corresponding to infant deaths; (2) the normal deaths around the late modal 
age at death which obey the law of accidental errors and reflect a natural lifetime; and 
(3) a transitional region where adult premature deaths partly overlap with the normal 
deaths (See figure 1, Lexis’s diagram). The modal age at death of the second 
distribution (i.e. the late modal age at death) represents the most central and natural 
characteristic of the human longevity. All deaths occurring at and above this mode are 
regarded as “normal” and account for the right-hand side of a normal distribution. The 
hypothetical left-hand side of distribution, below the mode, is disentangled from 
premature adult deaths by using the symmetrical property of the normal distribution 
(Lexis 1878). This proposal of Lexis supposed that all or almost all deaths occurring 
at the mode and above can be considered as natural or ageing-related by contrast to 
the premature deaths. It was warmly praised by statisticians and economists near the 
end of the nineteenth century (Bertillon 1878; Bodio 1887; Elderton 1903; Levasseur 
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1891; Pareto 1896; Perozzo 1879) (see Véron and Rohrbasser 2003 for more details 
on Lexis’s approach) and by biologists who later opposed the Gompertzian to the 
Lexian model (Greenwood and Irwin 1939). 
 

FIGURE 1 ABOUT HERE 
 
Pearson also drew careful attention to the distribution of deaths by age in his book 
The Chances of Death, published in 1897. He described this distribution as a chance 
distribution following perfectly clear mathematical laws defined by a certain 
skewness and precision. He considered that the distribution of deaths by age is not 
just one simple frequency distribution, but is made up of five components (i.e. old age, 
middle life, youth, childhood, and infancy mortality (see figure 2, Pearson’s mortality 
curve)) with different degrees of skewness and precision for each component. He 
highlighted that the frequency of death at later ages must depend on the incidence of 
death at earlier ages. He also noticed that whatever be the degree of skewness, 
practically the whole of the distribution falls within a range of three times the standard 
deviation taken on either side of the mean. A common feature put forward by Lexis 
and Pearson is the use of the distribution of deaths by age and its modal values to 
distinguish different components of mortality, corresponding to different age ranges. 
 

FIGURE 2 ABOUT HERE 
 
However, although the late modal age at death has been used earlier to characterize 
the natural and normal life span, life expectancy at birth was considered as the best 
index of the life span during the 20th century (Dublin 1923). It is still, at present, the 
most popular and widely used index providing a robust summary measure of 
population’s health. Indeed, during the early stages of the epidemiological transition 
when infant and child mortality were dominant, using life expectancy at birth as 
longevity indicator was advantageous as this indicator is highly sensitive to infant 
mortality and premature deaths. Today in the low mortality countries, while the 
majority of deaths occur at older ages, focusing on life expectancy can omit some 
important information. The advantages of the late modal age at death to study the 
adult longevity were regularly underlined during the 20th century (Elderton 1903; 
Greenwood and Irwin 1939; Gumbel 1937).  
 
 
Developing the concept of normal life duration, Lexis used empirical data for the 
early 1880s to estimate the normal lifetime (i.e. the modal age at death). It was 
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between 70 and 72.5 years in Central European countries, 75 years in Sweden and 78 
years in Norway (Lexis 1903). Lexis claimed that this age should be stable over time. 
Gumbel provided similar values in 1937, ranging from 70.6 years for males and 73.7 
years for females in Switzerland in 1901-1910 to 78.5 years for males and 78.8 years 
for females in the United States (white population) at the same period (Gumbel 1937). 
However, referring to the work of Freudenberg (1934) for the German Life Tables, 
covering the period from 1871-1881 to 1924-1926, and to Elderton and Oakley for 
four English Life Tables, Greenwood and Irwin argued that the late modal age at 
death was increasing over time, challenging the Lexis’s proposal for stability of the 
normal lifetime. They underlined that the modal lifetime was a variable quantity and 
that minimizing the unfavorable environmental factors would lead some people, who 
otherwise would have met a premature death, to reach the modal age at death 
(Greenwood and Irwin 1939).  
 
 
Other scholars such as Phillips (1935, 1954) and Beard (1950) paid attention to the 
distribution of deaths by age. Clarke (1950), for instance, distinguished between 
“anticipated” and “senescent” deaths. Like Lexis, he considered that the ages at death 
in the latter group were a measure of natural life spans. He argued that the observed 
decline in mortality cannot be associated with an extension of the life span as there is 
no reliable indication that any mortality improvement has occurred at advanced ages, 
say over the age of 85 years. Lives have been saved only at younger age, allowing 
more people than formerly to live out their full span or a longer portion of it. In this 
condition, Clarke considered that all deaths at age 80 and over are senescent deaths 
corresponding to the natural termination of the life spans. On the other hand, 
anticipated deaths correspond to all deaths, whether from accident, disease or any 
other cause, which are anticipations of the natural termination of life. According to 
Clarke, every individual carries with him his natural term of life, i.e. the age beyond 
which it is impossible for him to survive. Thus the distribution of “senescent” deaths 
by age should form a frequency distribution, in the same way as height and 
head-breath or all other hereditary characteristics. It should represent the ultimate or 
limiting form of the curve of deaths, suggesting again that the natural life spans are 
invariant (Clarke 1950).  

 
  

Although similarity can be found in many aspects with the proposal of Lexis, it is 
noteworthy that the proposal of Clarke is theoretically independent of the modal age 
at death. The value of 80 years, proposed in his paper published in 1950, is 6 years 
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higher than the observed modal age at death for males in the last available English life 
table at that time (ELT 10, 1930-1932). Moreover, Clarke acknowledged that the 
choice of the age of 80 years may be too young, especially looking at the mortality 
level experienced in the last life tables. From a methodological point of view, Clarke 
claimed that if the aim of the research is the natural life span, dx should be the primary 
function to look at, while qx or mux should be focused if the aim of the study is the 
anticipated mortality (Clarke 1950).          

 
 

The work of Clarke has been further developed by Barnett (1955, 1958) and Benjamin 
(1959, 1963, 1964, 1982 and 1988). In particular, in 1959, Benjamin proposed for 
simplicity to assume that the “senescent” deaths are symmetrically distributed around 
the late modal age at death. Considering that all the deaths occurring at the mode and 
above are senescent deaths, this proposal allows him to disentangle the “senescent” 
deaths from the “anticipated” deaths, exactly like Lexis did several decades before 
him. The left-hand side of the distribution of “senescent” deaths by age mirrors 
exactly the right-hand side. Then considering that the late modal age at death in the 
English Life Tables No. 1, 8 and 11, as well as the proportion of deaths falling in the 
area of “senescent” deaths, have increased over time, Benjamin argued that Clarke’s 
invariant distribution of senescent deaths hypothesis is erroneous (Benjamin 1959, 
1963 and 1964; Clarke 1963). 
 

FIGURE 3 ABOUT HERE 
 
Kannisto revived, at the beginning of the 21st century, the interest for the dx approach. 
Using the Lexis’s concept of normal life durations, he developed his hypothesis of an 
“invisible wall” to the extension of human longevity on the basis of a negative 
relationship between the modal age at death (M) and the standard deviation of the 
ages at death occurring above it (SD(M+)). He found a negative correlation between 
M and SD(M+) in cross-sectional data from fifteen low mortality countries for the 
period 1990-1995 and in time-series data for the United States. According to Kannisto, 
M and SD(M+) give a good account of the adult longevity under a given mortality 
regime. While M is increasing, it is not simply sliding to the right. Instead, its 
right-hand slope is being flattened vertically as if it was meeting an invisible wall. He 
contended that the rising trajectory of mortality in the highest age groups forms a 
barrier but only in a relative sense, offering stiffer resistance to further progress 
without setting any definite limit to life span (Kannisto 2001). In his study, he found a 
fairly universal pattern in the distribution of deaths at old age which is consistent with 
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the observation of Lexis that the distribution of deaths by age above the modal age at 
death approximates the second half of a normal distribution (Kannisto 2001).  
 
Building on this approach, two associated indicators were proposed in the form of 
M-/+kSD(M+) to indicate the shortest and longest normal life durations (Cheung 2003; 
Cheung et al. 2005a, 2005b). Preliminary results confirmed the observations of 
Kannisto, indicating that a compression of mortality occurred over time. According to 
hypothesis of Kannisto, the extension of human longevity might be meeting an 
increasing resistance. (Kannisto 2001). Empirical time series of the maximum 
reported age at death (MRAD), from 1876 to 2002 in Switzerland, suggest a value of 
3.2 for k (Cheung et al. 2006), and, from 1950 to 1999 in Japan, values of 3.5 for 
males and 3.6 for females (Cheung and Robine 2006). 
 
 
Although the utility of the modal age at death is now well acknowledged in studies of 
senescence and longevity because it is determined by adult mortality only (Horiuchi 
2003), its right determination is crucial. Indeed, it can be often located at different 
ages within the distribution of deaths by age due to certain flatness of the curve in the 
modal region (Kannisto 2001). Already in 1902, Pearson underlined that fallacious 
modal values could be chosen by a casual inspection. He suggested that the 
satisfactory way of determining the mode was to interpolate a curve through the tops 
of ordinates (Pearson 1902).  
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C. EMPIRCIAL OBSERVATIONS 
 
In the first part of this section, we used all the data available in the Human Mortality 
Database (HMD) by February 2006 ; i.e. 5032 period life tables for 26 countries (East 
and Western Germany East taken together), starting with Sweden in 1751. 
 
To examine the question of how many newborn are becoming adults, we took the 
number of survivors at age 18 (i.e., l(18)) as a first estimation of the proportion of 
newborn becoming adults. Adulthood is more a social concept than a biological one 
and “18 years” is the legal age to vote in many low mortality countries but other ages 
from 15 to 25 are possible. We guess that they will provide about the same 
information than 18. From a biological point of few, we can choose other ages such as 
the age at which the mortality rate is the lowest, indicating the strongest resistance to 
death or the age at puberty, indicating sexual maturity but the former is close to the 
age of 11 years and badly linked to adulthood and the later is difficult to assess. 
 

FIGURE 4 ABOUT HERE 
 
Figure 4 illustrates one of the most important change occurred during the 
demographic transition. Before the transition less that 70% of the newborn become 
adults. Then, from about 1820 in Sweden to 1920 in Spain, the proportion of newborn 
becoming adults rises above 70% to reach 99.5% today in the main low mortality 
countries, with little changes since 1990. Therefore, from now onwards, the longevity 
question becomes merely how long are adult life durations? 
 
How long are adult life durations? 
 
As in previous work, in this study we describe the adult life durations with the help of 
three indicators: M, the most frequent age at death; SD(M+), the standard deviation of 
the ages at death above M; and M+kSD(M+) as indicator of the highest life durations. 
 
In this explanatory study we directly use the observed M in the period life tables 
without any fitting (correction), we estimate SD(M+) with the simple formula 
SD(M+) = e(M)*1.25 as suggested by Kannisto (2001) and we compute M+kSD(M+) 
for k=3, k=3.5 and k=4. 
   

FIGURE 5 ABOUT HERE 
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Figure 5 shows that the most frequent adult life durations fluctuated between 70 and 
75 years before the demographic transition. During the first part of the demographic 
transition, from 1840 to 1940, the picture is quite blurred with values fluctuating 
between 70 years (Spain) and 80 years (Norway and Sweden). After 1940, a steady 
increase in the modal age at death is observed in all low mortality countries (Australia, 
Western and Nordic Europe, North America and Japan). The noise created by the 
Eastern European countries does not confuse the general trend.  
 

FIGURE 6 ABOUT HERE 
 
Figure 6 shows that the standard deviation of the ages at death above M (SD(M+)) 
fluctuated between 8 and 10 years without any trend before the demographic 
transition. Again, during the first part of the demographic transition the picture is 
blurred with an increase in the fluctuations. However, after 1940, a clear decreasing 
trend emerged in the main low mortality countries. In the last period, SD(M+) reached 
6 years or less in several countries (such as Switzerland). 
 
Note that Iceland presents extremely low and fluctuating values for M, complemented 
by extremely high and fluctuating values for SD(M+), probably due to its population 
size. 
 

FIGURE 7 ABOUT HERE 
 
Figure 7 suggests, with M+3SD(M+) as indicator of the highest life durations, that the 
highest life durations decreased from 1751 to 1801 in Sweden. In the first part of the 
demographic transition the picture is blurred with an indicator fluctuating between 95 
and 105 years but since the 1940s or the 1950s the increasing trend is obvious in 
almost all countries with all the values being postponed by about 5 years in 2001 and 
from now on reaching 110 years. Iceland displays again extremely high fluctuations in 
this indicator. 
 

FIGURE 8 ABOUT HERE 
 
Figure 8 shows the same trend, with M+4SD(M+) as indicator of the highest life 
durations, than figure 7. However, the trend is being flattened. Globally, the highest 
life durations fluctuated around 110 years from 1751 to 2001, suggesting that with 
k=4, the product of M+kSD(M+) is offsetting the increase in M.1 On the other hand, 

                                                 
1 Note that if SD(M+) and M are linearly related such that SD(M+)=C-M/4, then 
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the estimated values are much higher than the observed values before 1950, 
suggesting that the empirical values of k are below 4, probably between 3 and 3.5 as 
suggested by previous study (k= 3.2 in Switzerland and k = 3.5 in Japan) (Cheung et 
al. 2006; Cheung and Robine 2006). 
 
Some empirical relationships 
Beyond significant fluctuations, figure 9 suggests that the probability of dying at the 
age, corresponding to the most frequent age at death (i.e., q(M)), increases at least 
since 1950. This last observation is concomitant with the decrease in SD(M+) during 
the same period.  

FIGURE 9 ABOUT HERE 
 
Figure 10 is clearly related to figure 4. Before 1851, before the demographic 
transition a small proportion of people reach the age corresponding to the modal life 
durations, about 20%. During the first part of the transition, between 1851 and 1951, 
this proportion rose to 40%. This is mainly due to the fact that more newborn reach 
adulthood. However since 1950, this proportion stops increasing. According to 
previous works by John Pollard and our own work, if adult mortality follows a 
Gompertzian trajectory – and in an absence of infant mortality, lx at M will level off 
at about 36.8% corresponding to exp(-1) (see figure 24, changes in the age at 
l(x)=e(-1)). If adult mortality follows a logistic trajectory, and in an absence of infant 
mortality, lx at M will level off between 38% and 41%, according to a sensible range 
of values for the logistic parameters (see section E). 
 

FIGURE 10 ABOUT HERE 
 

Beyond the general trend for l(M), reaching a plateau after WWII, individual national 
values scattered from 30% to 50% in 2001 as well as in 1951. 
 

FIGURE 11 ABOUT HERE 
 
Figure 11 shows three periods in the increase in the number of deaths occurring in the 
nominal year corresponding to the modal age at death (d(M)). During the first period, 
before the demographic transition, about 2% of deaths occurred in this single year of 
age. During the first part of the demographic transition, from 1851 to 1951, d(M) 
doubled from 2% to 4%. Since 1951, d(M) goes on increasing but at a much slower 

                                                                                                                                            
M+4SD(M+) is constant at 4C. As shown in figures 12 and 21, the relation between 
SD(M+) and M is curvilinear, but can be approximated by a straight line fairly well. 
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pace. The number of deaths, d(M) is the product of l(M) by q(M). Since we have seen 
in figures 9 and 10 that l(M) is currently in the region of 0.4 and that q(M) is currently 
in the region of 0.1, we can expect to find d(M) to be in the region of 0.04 or slightly 
more. This is confirmed in figure 11. However, figure 11 also shows the historical 
trend which was much influenced by the levels of infant and child mortality, affecting 
the values of l(M). 
 
 
Eventually, the last figure of this first part, figure 12 illustrates the correlation between 
M and SD(M+), suggesting a curvilinear relationship.  
 

FIGURE 12 ABOUT HERE 
 
In the second part of this section, we present the same figures but after having 
eliminated several countries. Obviously, there is a lot of noise in the HMD and, after 
having presented the global pattern, we would like to focus on the low mortality 
countries and the most probable patterns.  
 
We started with 10 countries, Denmark, England and Wales, France, Japan, the 
Netherlands, Norway, Sweden, Switzerland, USA and Iceland (see figure 13).  
 

FIGURE 13 ABOUT HERE 
 
Due to a small population size, Iceland shows great fluctuations. Thus, we eliminated 
this country in the following analysis. 
 
Even if Norway presents quite high values in the second part of the 19th century and, 
on the opposite, Switzerland quite low values, compared with figure 5, most of the 
noise has been removed on the figures 14 and 15, showing the general pattern of the 
changes of the modal age at death and the standard deviation of the ages at death 
above M. 
 

FIGURE 14 ABOUT HERE 
 

FIGURE 15 ABOUT HERE 
 
Then the observation of changes in M+3SD(M+), presented at the figure 16, led us to 
eliminate the US which is displaying an unexpected trend for this indicator of the 
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highest life durations. The combination of M and SD(M+) highlights a peculiar trend 
in the US, partially visible on the previous figures 5 (changes in M) and 6 (changes in 
SD(M+)). This raises again questions about the quality of the US data (Kannisto 
1994).  
 

FIGURE 16 ABOUT HERE 
 

FIGURE 17 ABOUT HERE 
 
Figures 17 and 18 suggest that, excepting Japan, k is probably lower than 3.5. To 
further specify k, we calculated the average maximum reported age at death for 
England and Wales from 1911 to 1999 and Sweden from 1861 to 2003 (See figure 25). 
The results show that England and Wales has similar values for both sexes than Japan 
(k=3.5) and Sweden has same values for both sexes than Switzerland (k=3.2). One 
reason for these differences in the empirical value of k lies in the fact that Japan and 
England and Wales are much larger countries than Sweden and Switzerland. 
Population size matters in the determination of k. For example, a theoretical 
calculation by a method suggested by Thatcher (1999) shows that in a large country 
where 50 people reach the age of 105 years we can expect that one or two will reach 
the age of 110 years, but in a small country where only 5 people reach the age of 105 
years it is unlikely that any of them will reach the age of 110 years. If we assume that 
deaths above the mode follow the Lexis model, a theoretical calculation shows that if 
a small country is of a size which produces a value k = 3.2, then it is perfectly 
possible that a country which has a population five times as large (but is otherwise 
demographically similar) can produce a value k = 3.6. Thus differences in k are to be 
expected between countries of different sizes. 
 

FIGURE 18 ABOUT HERE 
 

FIGURE 19 ABOUT HERE 
 
Beyond remaining fluctuations, figure 19 suggests a steady increase in q(M) during 
the 20th century from about 9%, in average, in 1900 to about 12% in 2000. In the 
Gompertz model there is a very simple relationship, which shows that the force of 
mortality at the mode, denoted by µ(M), is equal to the Gompertzian ageing rate, as 
represented by the parameter b (see section E1 below, equation (4)). A typical modern 
value would be b = 0.12. For this value the relationship shows that µ(M) = 0.12, 
which implies that q(M) = 0.11, which is reasonably in line with the data plotted in 
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figures 9 and 19. This is a reassuring agreement between theory and observation. 
However, the figures give much new information about the past values of q(M), 
which in turn implies information about the past trend in the Gompertzian ageing rate. 
 

FIGURE 20 ABOUT HERE 
 
Figure 20 shows significantly less fluctuations in the number of survivors at M than in 
figure 10. However, l(M) remains quite scattered around 40% in the last fifty years. 
 

FIGURE 21 ABOUT HERE 
 
Eventually figure 21 illustrates the relationship between M and SD(M+) in the 8 
selected countries: Denmark, England and Wales, France, Japan, the Netherlands, 
Norway, Sweden and Switzerland. 
 
The value of SD(M+) depends on the distribution of age at death above the mode, 
which we shall show in section E are well fitted in life tables by both the logistic and 
the Lexis models. The Lexis model implies a particularly simple relationship between 
SD(M+) and the force of mortality at the mode, which is denoted by µ(M)2 (see figure 
26). This simple relationship can be written as µ(M) = 0.798 / SD(M+) (Proof is given 
in section E). We know from results given above that modern values of µ(M) are in 
the region of 0.12, so the simple relationship leads us to expect that SD(M+) will be in 
the region of 6.66 years. This appears to be well in line with figures 6 and 15, so that 
there is again a reassuring agreement between model and observation. 
 
However, figures 12 and 21 go much further. They confirm very clearly and with 
compelling evidence the existence of the trend which was first noted by Kannisto 
(2001). SD(M+) has been falling while M has been rising. The ages of death above 
the mode have become more compressed. What was the reason?  
 
The simple equation above shows that there is an inverse relationship between 
SD(M+) and µ(M) as shown in figure 26. As one rises, the other will fall. However, 
this does not mean that one causes the other. In fact, these are both statistics which 
have been calculated from the ages at death. Moreover, in a life table the ages at death 
are entirely determined by the death rates. Ultimately, it is changes in the death rates 
which cause both the rise in M and the rise in µ(M) and the fall in SD(M+).  
 

                                                 
2 We have used the approximation µ(M) = –ln(1-q(M)) 
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The basic fact is that death rates in the highest age groups have not been falling as fast 
as the death rates in the age groups below them. This means that although age-specific 
death rates have fallen at all ages, they have fallen more at low ages than at high ages, 
so that the slope of a line fitted to them has become steeper. In the terminology of 
section E, the ageing rate has risen. In the Gompertz model, this means that µ(M) will 
rise. In the Lexis model, this means that SD(M+) must have fallen. Perhaps, though, it 
does not really need models to show that if the ageing rate increases, then the ages at 
death will be compressed.   
 

The next question is in practice why death rates in the highest age groups did not fall 
faster during the periods when compression occurred. It is no doubt a matter for 
controversy. And perhaps sooner or later that it is absolutely possible for them to fall 
faster. This can be explained by the fact that new drugs (such as the discovery of 
sulphonamide and penicillin and the other antibiotic drugs, and the discovery of the 
cure for tuberculosis) and the improvements in surgery and medical technology do 
have reduced the general level of mortality at young and middle ages, and so have 
driven up the mode. However, at very high ages, a considerable proportion of people 
have conditions that do not respond to drugs and surgery, at least to the same extent as 
younger people. The body deteriorates. Measurements of vital capacity, maximum 
heart rate, maximum oxygen consumption and the rate of cell renewal all decline with 
age. Recovery times are longer. There are also irreversible changes, like the loss of 
brain cells and lung tissue. In the phrase of Gompertz, a man’s power to avoid death is 
gradually exhausted. Thus it is not surprising that drugs and surgery can only cure a 
smaller proportion of people at very high ages than at younger ages.  
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D. COMPARATIVE ANALYSIS WITH OTHER MORTALITY MEASURES 
 
The most widely used measure of central tendency of death distribution in period life 
tables is the life expectancy at birth (e(0)). It can be strongly affected by high 
mortality at young ages. So is the median age at death, another major mortality 
measure of central tendency. On the other hand, usually the late modal age at death 
(M) is determined solely by mortality at old ages. Substantial changes in infant and 
child mortality will not alter M at all. 
 
Figure 22 displays trends in M (estimated from smoothed d(x) curves), median and 
e(0) by sex for France and Japan. It reveals that levels and trends of these three central 
tendency measures are notably different. Numerically, they are ranked, in the 
descending order, as M, median and e(0), because the relatively large number of 
deaths among infants and at very young ages as well as the left-skewed pattern of the 
bell-shaped distribution of adult deaths make e(0), and to a lesser extent, the median, 
smaller than the mode. 
 

FIGURE 22 ABOUT HERE 
 
Differences among those measures were considerable when mortality at young ages 
was high, but their differences remain notable even in recent years: M is higher than 
the median by a few years, and the median is higher than e(0) by a few years. e(0) for 
Japanese females is known to have surpassed 85, but their M is actually over 90. 
Although e(0) is usually considered as “the typical age at death,” particularly among 
the general public, the true typical age is significantly higher than e(0) if the most 
frequent age at death should be considered as typical (Kannisto 1996). 
 

Trends of the three indicators are noticeably different, too. In France, both e(0) and 
the median age increased substantially during the first half of the twentieth century, 
but M remained nearly constant for males and increased only slightly for females. A 
remarkable increase in M started during the second half of the twentieth century 
(apparently around 1950 for females and around 1970 for males), whereas the 
increases of e(0) and the median age slowed down a little, and the three measures has 
been ascending at comparable pace in the last few decades. In brief, during the 
twentieth century, the increases of e(0) and median decelerated, but in contrast, the 
increase of M accelerated, and the turning points appear to have been in the third 
quarter of the century. 
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For Japan, highly reliable mortality estimates are limited to the second half of the 
century, in which the trends were fairly consistent with those of France. In the 1960s 
and 1970s, the rises of e(0) and median decelerated but M continued to ascend linearly. 
During the last few decades, the three measures exhibit parallel linear increases. 
 
Thus, M, median and e(0) tell us different stories about the recent history of lifespan 
extension. The main reason for the differences seems to be the fact that, unlike the 
other two, M is essentially an overall measure of old-age mortality. Figure 23 
compares M with two other indicators of old-age mortality, the life expectancy at an 
old age (65 in this analysis) and the logarithm of geometric mean of age-specific 
death rates at old ages (65-99 was chosen). Data from France and Japan indicate that 
M is highly linearly correlated with both of the two measures. Therefore, these three 
indicators are expected to show very similar trends of old-age mortality. 
 

FIGURE 23 ABOUT HERE 
 
However, in practice, M is particularly useful because it is obtained without selecting 
a specific age range. In figure 23, e(65) was adopted as an old-age mortality measure. 
This means that 65 was chosen as the starting point of old age. In order to calculate 
the geometric mean of death rates, an age range has to be specified. In both cases, the 
decision is somewhat arbitrary, and an appropriate range of “old age” may shift 
upward as old persons in later generations become healthier and less frail. M is free of 
this problem. 
 
 
Thus the discussion and data analysis in this section seem to suggest that M is a useful 
measure of longevity, particularly for economically and technologically developed 
countries in which mortality improvements are mainly due to declines in old-age 
mortality. 
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E. THE MODAL AGE AT DEATH IN MORTALITY MODELS 
 
The later modal age at death (M) is useful not only as a measure of longevity but also 
in understanding and applying major mathematical models of mortality trajectory. In 
what follows, we will re-express popular mortality models using M as a parameter, 
and investigate characteristics of M-related measures in those models. 
 
1. Re-expression of mortality models using the modal age at death 
 
Most widely used models can be formulated using M. To our knowledge, this special 
advantage is not found for the life expectancy or the median age at death. 
 
The force of mortality at age x in the Gompertz, logistic and Weibull models are 
conventionally expressed as follows: 
 
Gompertz:       (1.) bxaex =)(µ

Logistic (with three parameters): bx

bx

ega
aex

)/(1
)(

+
=µ  ,  (2.) 

Weibull:        (3.) 

hese models can also be expressed using M: 

ompertz:      (4.) 

e

baxx =)(µ
 
T
 
G )()( Mxbbex −=µ

Logistic (with three param ters): )(

)(

)(
Mxbbex

−

=µ   (5.) 
)/(1 Mxbegb −+

Weibull: 
b

M
x

M
bx ⎟

⎠
⎞

⎜
⎝
⎛=)(µ      (6.) 

 
ote that although the same symbols (a and b) indicate different things in different N

models, each has comparable meanings across those models. Conceptually, in each 
model, b is the parameter representing some “aging rate,” i.e., the extent to which 
mortality rises with advancing age, though mathematically it differs among the 
models: the rate of exponential, logistic, or polynomial increase. a is exactly or 
approximately the force of mortality at a “reference age” such as 0 and 1:  µ(0)=a in 
the Gompertz model,  µ(0)=a/{1+(a/g)}≈a in the logistic model, and µ(1)=a in the 
Weibull model. g in equations (2) and (5) is the upper bound of logistic growth. a ,b 
and g are assumed positive. 
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For each model, the Makeham version could be set up as shown below, by assuming 

ompertz-Makeham:     (7.) 

Logistic-Makeham: 

that adult mortality is the sum of premature mortality, which is assumed constant over 
age and denoted by c below, and senescent mortality, which is represented by the 
original form: 
 

)()( sMxbbecx −+=µG

)sM

)(

(

)/(1
)(

sMxb

xb

egb
becx

−

−

+
+=µ    (8.) 

Weibull-Makeham: 
b

ss M
x

M
bcx ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=)(µ     (9.) 

 
hese Makeham versions use the modal age at death from senescent mortality (Ms), 

 each of the models, a in the conventional forms (equations (1), (2) and (3)) is 

                                                

T
but usually, when a Makeham version is fitted to mortality data, premature mortality 
is almost negligible compared to senescent mortality around M. Therefore, Ms is 
nearly equal to (though slightly higher than) M.3

 
 
In
replaced by M in the new forms (equations (4), (5) and (6)). In each case, M is 
intuitively clearer than a. For example, let us compare equations (1) and (4) for the 
Gompertz model as an example. M seems more easily interpretable than a in the 
following three aspects. Firstly, the Gompertz model is fitted to death rates at adult 
ages, and a is the force of mortality at age zero extrapolated from adult ages. Thus the 
interpretation of a is not as straightforward as that of M, because the observed 
neonatal death rate is considerably higher than a. Secondly, the value of a is very 
small and most researchers do not have a clear idea about its plausible range, but they 
have a clear idea about the plausible range of the most frequent age of adult deaths. 
Finally, when mortality schedules of two populations are compared, a paradoxical 
result about a could be obtained. Although a is generally considered to be a parameter 

 
3 For example, according to the logistic-Makeham model fitted to mortality data for 
Swedish women aged 55-95 in 1973-1977 (Horiuchi and Coale 1990), M=84.3 and 
Ms=84.6. This proximity is not surprising, because at very old ages, senescent 
mortality is usually high enough to make premature mortality almost negligible. It is 
estimated from the fitted model that 98 percent of ( )Mµ  is due to senescent 
mortality, and only 2 percent is due to premature mortality.  

 19



DRAFT: DO NOT CITE OR QUOTE WITHOUT AUTHOR’S PERMISSION 
 

indicating the overall level of mortality, it is possible for a population with higher 
adult death rates to have a lower value of a than the other population, if b is 
substantially different between the two schedules. In contrast, a lower value of M 
almost always indicates higher mortality rates at old ages at which many deaths occur. 
 
 
In what follows, we will derive the M-related expressions (equations (4), (5) and (6)) 
from the corresponding conventional expressions (equations (1), (2) and (3), 
respectively). All of the derivations are based on a fundamental relation shown by 
Pollard (1991): at the modal age, the force of mortality and the life table aging rate 
(Horiuchi and Wilmoth 1997) are identical, i.e.,  
 

)()( MkM =µ        (10.) 
 

here w dxxdxk /)(ln)( µ= . This is obtained by differentiating )()()( xxlxd µ=  with 
 to x, setting x=M, a ivative of d(x) a

ompertz:       (11.) 

respect nd making use of the fact that the der t M is 
zero. The life table aging rate (LAR) for each model is as follows (Horiuchi and Coale 
1991): 
 
G bxk =)(

Logistic: bxega
bk      (12.) x

)/(1
)(

+
=

      (

or the Gompertz model, by setting x=M in equations (1) and (11) and substituting 

. M-related measures in mathematical models 

 this section, mathematical expressions of M, µ(M), l(M) and d(M) for the Gompertz, 

Weibull: 13.) xbxk /)( =

 
F
them into equation (10), we get bMbea −= . Substitution of this into equation (1) leads 
to equation (4). A similar derivation works for the logistic model. By setting x=M in 
equations (2) and (12) and substituting them into equation (10), we obtain bMbea −=  
again, which is substituted into equation (2), resulting in equation (5). For th  
model, by setting x=M in equations (3) and (13) and substituting them into (10), we 
have )1( +−= bMba . Substitution of this into equation (3) leads to equation (6). 
 

e Weibull

2
 
In
logistic, and Weibull models are shown in terms of their conventional parameters. The 
expressions for l(M) and d(M) should be taken with caution, because they are obtained 
assuming that the age trajectory of mortality throughout the entire lifespan follows the 
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model, which actually fits well mortality at adult ages only. Thus, if the model fits 
mortality above age 30, the analytical expressions for l(M*) and d(M*), where 
M*=M-30,  should be close to observed values of l(M)/l(30) and d(M)/l(30). 
 
Gompertz model 

ollard and his colleagues have investigated characteristics of M in Gompertzian 
 
P
mortality (Pollard 1991, 1998; Pollard and Valkovics 1992), and our discussion on the 
Gompertz model is partly recapitulation and partly elaboration of their work. M, µ(M), 
l(M) and d(M) for the Gompertz model are given by: 
 

b
ab )/ln(

=         (14.) M

bM =)(µ  
−= eMl

)( )/(1 ≈= +−

 
he expressions for M (equation (14)) is implied by , which was derived 

s from eq

he survival function is given by  

   (18.) 

Note that l(x) is scaled d 

      (15.) 
1)/(1 −+ ≈ eba       (16.) )(

eb /       (17.) ebMd ba

T bMbea −=
earlier. The expression for µ(M) (equation (15)) come uation (4) by setting 
x=M. The expression for d(M) is obtained simply as a product of  l(M) and µ(M). 
Thus, we need to show the derivation of l(M) only.  
 
T

∫−=
x

dyyxl ))(exp()( µ    
0

 by l(0)=1. Substituting equation (1) into equation (18) an
making use of bMbea −= , we get 

)exp(exp)( )(

0

Mxb
xy

y

by e
b
ae

b
axl −

=

=

−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⎡
⎥⎦
⎤

⎢⎣
−= ,   (19.) 

which leads to  because usually a≪b.  (Note that if the integral in 
o x, l(M) will b

ogistic model

)/(1)( baeMl +−=
(18) is from -∞ t e exactly equal to e-1. ) 
 
L  

, µ(M), l(M) and d(M) for the three-parameter logistic model are expressed as: 
 
M
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b
abM )/ln(

=         (20.) 

b
gb

bM ≈
+

=
)/(1

)(µ       (21.) 

{ } 1)/(
)/(

)/(1
)/(1
)/(1)( −−

−

≈+≈
⎭
⎬
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⎩
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+
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= egb
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{ }
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b
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/
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+
≈

++
= ++

 (23.) 

 
It is interesting to note that the expression of M is same for the Gompertz and logistic 
models. (However, different values of M, a and b will be estimated by fitting these 
two models to the same data.) As in the case of the Gompertz model, derivations of M, 
µ(M), and d(M) are very simple. As for l(M), by substituting of equation (2) into 
equation (18) and using , we have bMbea −=

( ){ }[ ]( )
)/()(

)/(

0
/

)/(1
)/(1

)(lnexp)(

bgMxb
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  (24.) 

By setting x=M, we have { } { }[ ] )/()/(1/)/(1)( bggagbMl −++= . Because a/g is very 

small, this is close to . The denominator of the ratio converges to e 

as b/g approaches zero. Because b/g is fairly small, l(M) is expected to be close to e

{ } )/()/(1/1 bggb+

-1. 
(It helps to have some idea about plausible ranges of parameter ratios, a/b, b/g and a/g. 
Note that the three parameters (a, b and g) are approximately or exactly the forces of 
mortality at different ages: a is nearly equal to extrapolated µ(0), b is close to actual 
µ(M), and g is the upper limit of µ. With typical rounded values such as M=80, b=0.1 
and g=1, we have a/b=0.0003, b/g=0.1 and a/g=0.00003.)  
 
Weibull model 
 
Expressions for M, µ(M), l(M) and d(M) in the Weibull model are shown below: 

( ) )1/(1/ += babM        (25.) 

MbM /)( =µ        (26.) 
1)1/()( −+− ≈= eeMl bb       (27.) 
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( ) )/(/)( )1/( MebeMbMd bb ≈= +−      (28.) 
  
The expression for M is implied by , which was shown earlier. The 
expression for µ(x) is obtained by simply setting of x=M in equation (6). As for l(M), 
substitution of equation (3) into equation (18) results in 

)1( +−= bMba

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

+
−=

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

+
−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡

+
−=

+
+

=

=

+
1

1

0

1

1
exp

1
exp

1
exp)(

b
b

xy

y

b

M
x

b
bx

b
ay

b
axl ,  (29.) 

 

so that ,  which is slightly higher than because the value of b in )1/()( +−= bbeMl 1−e  

the Weibull model is typically 6∼10.Then, the expression for d(x) follows. 

omparison among the models
 
C  

e of mortality at the reference age (0 for Gompertz 
nd logistic, and 1 for Weibull).  

ch 
x)=e-1 approaches M. This prediction is supported by the data shown in figure 27. 

eas

), which suggests concentration of more deaths in a 
arrower age range around M. 

 
It should be noted that the expressions of M-related measures for the three models are 
fairly similar. Each of the three expressions for M (equations (14), (20) and (25)) 
includes b/a, suggesting that M is determined by the relative difference between the 
rate of age-related mortality increase (which is the rate of exponential, logistic, or 
polynomial increase) and the forc
a
 
 
As indicated by equations (16), (22) and (27), l(M) in each of the three models is close 
to (though slightly larger than) 368.01 ≈−e . Interestingly, even though the overall 
level of adult mortality changes substantially, l(M)/l(30) is expected to be fairly 
constant (assuming mortality above age 30 is well approximated by those models).  
It can also be expected that as mortality at young ages continues to decline, l(30) 
moves toward unity and l(M)/l(30) comes closer to l(M), so that the age at whi
l(
 
 
The expressions for µ(M) (equations (15), (21) and (26)) indicate that a rise in µ(M) is 
associated with a higher value of b, i.e., a steeper incr e of age-related mortality 
increase. Because l(M) is fairly stable and close to 1−e , an increasing b is also 
associated with a rise in d(M
n
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3. Modeling post-modal death distribution 

exis model and its characteristics
 
L  
 
Although all of the models are presented in terms of )(xµ , the model by Lexis is 
formulated with respect to d(x). As described previously, a main feature of the Lexis 
model is the normal distribution of d(x) above age M: 

 
2

2

2 (( ) ( ) exp
22

x Md x l M
ss π

⎛ ⎞−
= −⎜ ⎟

)

⎝ ⎠
 for any x M≥ , (30.) 

parameter of the normal 
istribution and the quantity computed from empirical data.  

ion, s, e(M) and 

where s is the standard deviation of the normal distribution. s is SD(+) in earlier 
sections of this paper, but we use different notations for the 
d
 
 
Because of the assumption of normal distribut ( )Mµ  are related 

ith each other in numerically specific manner: 
 

 (31.) 

w

( ) 0.798e M s≈        
( ) 0.798 /M sµ ≈        (32.) 

aking use of equation (30), the life expectancy at the modal age at 
death is given by 

 
These numerically specific relationships are derived from the assumption of normal 
distribution. By m
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)

 obtained in the following way. The survival function for 
any age above M is given by 

 
The force of mortality at M is
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l M s ss
πµ

π
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omparison of Lexis and logistic models

 
 
C  

he Lexis model fit data above M very well (Cheung and Robine 2006). On the other 
 
T
hand, logistic models have been shown to fit old-age mortality data remarkably well 
(Thatcher, Kannisto, and Vaupel 1998; Thatcher 1999). Thus it seems important to 
investigate relationships between the Lexis model, expressed in terms of d(x), and 
logistic model, expressed in terms of )(xµ . 
 
 
We fitted both models to some empirical mortality schedules and found that not only 

 order to investigate d(x) patterns in detail, it is useful to focus on the rate of relative 

both of the models fit data well, but also the mortality schedules estimated by the two 
models are nearly identical. Figure 28 shows the results for Japanese females, 
1995-1999, as an example. In what follows, we will explore the reason why the two 
models could produce almost same patterns of d(x) for post-modal ages. 
 
 
In
decrease in d(x), which is defined as 

)()(' xkx(x)/d(x)-dv(x) −== µ  .     (33.) 
v(x) is expected to rise with ag

he Lexis model for post-modal ages is expressed as: 

e after M. 
 
T

⎟⎟
⎠
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−= 22

exp
2

)()(
ss

Mlxd
π

  for any ,  (34.) Mx ≥
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where s is the standard deviation o dis sing 
equation (33), we get the v(x) function for the Lexis model: 

f the (right half of) normal tribution. U

)(1
)( 2sxd

 

)(')( Mxxdx −=−= .     (35.) 

Thus, the rate of relative de e, 
and the slope of the linear rise is 1/s . 

v

crease in d(x) for the Lexis model rises linearly with ag
2

 
The v(x) function for the logistic model is obtained by substituting equations (2) and 
(12) into equation (33): 

)()/(1)/(1 Mxbbx egbega −++

 

)( )1()(
Mxbbx ebbeax

− −
=

−
=  .    (36.) 

This is another logistic curve with the increase rate b, but unlike the logistic function 

v

of )(xµ  (equation (2) or (12)), it is bo he 
point of inflection of this v(x) curve can be found at age Z, which is given by 

unded by –b and g. It is useful to know that t

 

b
bgM

b
agZ )/ln()/ln(

+==   .     (37.) 

 
0)(" =Zv  This is obtained by setting and comparing the result with equation (20). Z 

is older than M because g>b
 

hus the mathematical forms of v(x) for the Lexis and logistic models are clearly 
stic functi

t are relatively straight: the fairly flat part near the 
wer bound, the steeply rising part around the point of inflection, and the fairly flat 

ows that this age range is from 
9.4 to 112.0 for Japanese females in 1995-1999, and that the segment of v(x) curve in 
is range is fairly straight. A straight line can be drawn to pass through the two end 

>0. 

T
different: linear versus logi ons of age. However, it should be noted that a 
logistic curve has three parts tha
lo
part near the upper bound. Substantial curvatures tend to be found in transitory parts 
between these relatively straight parts (see figure 29). 
 
 
Equation (34) implies that the age range of [M, 2Z-M], which centers at the age of 
inflection point Z, covers 2ln(g/b)/b years. Figure 29 sh
8
th
points, indicated by asterisks, and the inflection point, marked by “+”, and the slope 
of the line will be b(g-b)/2(ln(g)-ln(b)).  
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Therefore, if parameters b and g in the logistic model and s in the Lexis model are set 
up to satisfy 
 

2))ln()(ln(2 sbg −

 

1)( bgb
≈

−  ,      (38.) 

nd if the v(x) curve for the logistic model is fairly straight in the age range [M, 
2Z-M], the two v(x) x) 

, i.e., the 

ight not be very straight
istance between M and Z is lim

e logistic 
odel converges to g, but that for the Lexis model keeps increasing linearly. The 

eparture is obvious with respect to the force of mortality.

a
functions should be close to each other, leading to similar d(

functions for the age range. Note that ))(exp()()( ∫−=
x

M
dyyvMdxd

d-function is directly related to the integral of v-function, and thus two fairly similar 
sequences of v(x) values are likely to produce two very similar sequences of d(x) 
series. As seen in figure 29, the curve segment m  if M is far 
from Z. However, with empirical data, the d ited by 
plausible numerical ranges of b and g in logistic models fitted to observed life tables. 
Thus, the Lexis model and logistic model, if fitted to the same data, are likely to 
produce numerically almost identical d(x) distributions for post-modal ages. 
 
 
It should be noted, however, that if the Lexis and logistic models are extrapolated to 
extremely high ages, they depart from each other: the v(x) function for th
m
d  ( )xµ  in the logistic 
model converges to the upper limit, whereas ( )xµ  in the Lexis model, expressed as  

 
2 2

2 2
( ) ( )exp exp

2 2x

x M y Mdy dy
s s

∞⎛ ⎞ ⎛ ⎞− −− −⎜ ⎟

 

⎜ ⎟
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∫  

continues to rise with age. 
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FIGURE 1. LEXIS’S NORMAL LIFE DURATIONS  
 
 

 

 
 
 
 
 
 
 
 
 
 
 
Source: Adapted from Lexis (1878) 
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FIGURE 2. PEARSON’S FIVE COMPONENTS OF A CHANCE 
DISTRIBUTION AT DEATH AND THE THEORETICAL END OF LIFE 

 
 
Source: Adapted from Pearson (1897) 
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FIGURE 3. BENJAMIN’S THE LATER MODE AND THE RIGHT-HAND 
SIDE OF THE DISTRIBUTION OF “SENESCENT” DEATHS 
 

 
Source: Adapted from Benjamin (1959) 
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FIGURE 4. CHANGES IN THE PROPORTION OF NEWBORN REACHING 
ADULTHOOD AS INDICATED BY lx=18, UNDER CURRENT MORTALITY 
CONDITIONS – HUMAN MORTALITY DATABASE (HMD), SINCE 1751: 
2516 FEMALE LIFE TABLES 
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FIGURE 5. CHANGES IN THE MODAL AGE AT DEATH (M), UNDER 
CURRENT MORTALITY CONDITIONS – HUMAN MORTALITY 
DATABASE (HMD), SINCE 1751: 2516 FEMALE LIFE TABLES 
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FIGURE 6. CHANGES IN THE STANDARD DEVIATION OF THE AGES AT 
DEATH ABOVE M (SD(M+)), UNDER CURRENT MORTALITY 
CONDITIONS – HUMAN MORTALITY DATABASE (HMD), SINCE 1751: 
2516 FEMALE LIFE TABLES 
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FIGURE 7. CHANGES IN M+3SD(M+), UNDER CURRENT MORTALITY 
CONDITIONS – HUMAN MORTALITY DATABASE (HMD), SINCE 1751: 
2516 FEMALE LIFE TABLES 
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FIGURE 8. CHANGES IN M+4SD(M+), UNDER CURRENT MORTALITY 
CONDITIONS – HUMAN MORTALITY DATABASE (HMD), SINCE 1751: 
2516 FEMALE LIFE TABLES 

90

95

100

105

110

115

120

125

130

1751 1776 1801 1826 1851 1876 1901 1926 1951 1976 2001

Australia
Austria
Belgium
Bulgaria
Canada
Czech Rep
Denmark
England
Finland
France
Germany
GermanyEast
GermanyWest
Hungary
Iceland
Italy
Japan
Latvia
Lithuania
Netherlands
NewZealand
Norway
Russia
Slovakia
Spain
Sweden
Switzerland
USA

sex women

Somme de M+4SD(M+)

year

country

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 40



DRAFT: DO NOT CITE OR QUOTE WITHOUT AUTHOR’S PERMISSION 
 

FIGURE 9. CHANGES IN THE PROBABILITY OF DEATH AT M, UNDER 
CURRENT MORTALITY CONDITIONS – HUMAN MORTALITY 
DATABASE (HMD), SINCE 1751: 2516 FEMALE LIFE TABLES 
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FIGURE 10. CHANGES IN THE NUMBER OF SURVIVORS AT M (lx=M), 
UNDER CURRENT MORTALITY CONDITIONS – HUMAN MORTALITY 
DATABASE (HMD), SINCE 1751: 2516 FEMALE LIFE TABLES 

0

10000

20000

30000

40000

50000

60000

1751 1776 1801 1826 1851 1876 1901 1926 1951 1976 2001

Australia
Austria
Belgium
Bulgaria
Canada
Czech Rep
Denmark
England
Finland
France
Germany
GermanyEast
GermanyWest
Hungary
Iceland
Italy
Japan
Latvia
Lithuania
Netherlands
NewZealand
Norway
Russia
Slovakia
Spain
Sweden
Switzerland
USA

sex women

Somme de lx

year

country

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 42



DRAFT: DO NOT CITE OR QUOTE WITHOUT AUTHOR’S PERMISSION 
 

FIGURE 11. CHANGES IN THE NUMBER OF DEATHS OCCURRING AT M 
(dx=M), UNDER CURRENT MORTALITY CONDITIONS – HUMAN 
MORTALITY DATABASE (HMD), SINCE 1751: 2516 FEMALE LIFE 
TABLES 
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FIGURE 12. CORRELATION BETWEEN THE MODAL AGE AT DEATH (M) 
AND THE STANDARD DEVIATION OF THE AGES AT DEATH ABOVE M 
(SD(M+)), UNDER CURRENT MORTALITY CONDITIONS – HUMAN 
MORTALITY DATABASE (HMD), SINCE 1751: 5003 MALE AND FEMALE 
LIFE TABLES 
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*We deleted 29 observations, 27 for M being below 40 years and 2 for SD(M+) being over 25 years 
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FIGURE 13. CHANGES IN THE MODAL AGE AT DEATH (M), UNDER 
CURRENT MORTALITY CONDITIONS – HUMAN MORTALITY 
DATABASE (HMD), SINCE 1751: A SELECTION OF 10 COUNTRIES 
 

55

60

65

70

75

80

85

90

95

1751 1776 1801 1826 1851 1876 1901 1926 1951 1976 2001

Denmark
England
France
Japan
Netherlands
Norway
Sweden
Switzerland
USA
Iceland

sex women

Somme de Age

year

country

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 45



DRAFT: DO NOT CITE OR QUOTE WITHOUT AUTHOR’S PERMISSION 
 

FIGURE 14. CHANGES IN THE MODAL AGE AT DEATH (M), UNDER 
CURRENT MORTALITY CONDITIONS – HUMAN MORTALITY 
DATABASE (HMD), SINCE 1751: A SELECTION OF 9 COUNTRIES 
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FIGURE 15. CHANGES IN THE STANDARD DEVIATION OF THE AGES AT 
DEATH ABOVE M (SD(M+)), UNDER CURRENT MORTALITY 
CONDITIONS – HUMAN MORTALITY DATABASE (HMD), SINCE 1751: A 
SELECTION OF 9 COUNTRIES 
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FIGURE 16. CHANGES IN M+3SD(M+), UNDER CURRENT MORTALITY 
CONDITIONS – HUMAN MORTALITY DATABASE (HMD), SINCE 1751: A 
SELECTION OF 9 COUNTRIES 
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FIGURE 17. CHANGES IN M+3SD(M+), UNDER CURRENT MORTALITY 
CONDITIONS – HUMAN MORTALITY DATABASE (HMD), SINCE 1751: A 
SELECTION OF 8 COUNTRIES 
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FIGURE 18. CHANGES IN M+3.5SD(M+), UNDER CURRENT MORTALITY 
CONDITIONS – HUMAN MORTALITY DATABASE (HMD), SINCE 1751: A 
SELECTION OF 8 COUNTRIES 
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FIGURE 19. CHANGES IN THE PROBABILITY OF DEATH AT M, UNDER 
CURRENT MORTALITY CONDITIONS – HUMAN MORTALITY 
DATABASE (HMD), SINCE 1751: A SELECTION OF 8 COUNTRIES 
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FIGURE 20. CHANGES IN THE NUMBER OF SURVIVORS AT M (lx=M), 
UNDER CURRENT MORTALITY CONDITIONS – HUMAN MORTALITY 
DATABASE (HMD), SINCE 1751: A SELECTION OF 8 COUNTRIES 
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FIGURE 21. CORRELATION BETWEEN THE MODAL AGE AT DEATH (M) 
AND THE STANDARD DEVIATION OF THE AGES AT DEATH ABOVE M 
(SD(M+)), UNDER CURRENT MORTALITY CONDITIONS – HUMAN 
MORTALITY DATABASE (HMD), SINCE 1751: 2346 MALE AND FEMALE 
LIFE TABLES, A SELECTION OF 8 COUNTRIES 
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 *We deleted 18 observations for M being below 50 years 
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FIGURE 22. TRENDS IN THE LIFE EXPECTANCY AT BIRTH (DASHED), 
MEDIAN AGE AT DEATH (DOTTED) AND LATER MODAL AGE AT DEATH 
(SOLID) FOR FEMALES AND MALES IN FRANCE (1899-2001) AND JAPAN 
(1950-2002). 
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FIGURE 23. RELATIONSHIPS BETWEEN THE LATER MODAL AGE AT 
DEATH, LIFE EXPECTANCY AT AGE 65, AND LOGARITHM OF 
GEOMETRIC MEAN OF 5-YEAR AGE-SPECIFIC DEATH RATES 
BETWEEN 65 AND 99 FOR FRENCH FEMALES (.) AND MALES (O) AND 
JAPANESE FEMALES (*) AND MALES (+). 
(A) 

 

 
(B) 
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FIGURE 24. CHANGES IN THE AGE AT lx=e(-1), UNDER CURRENT 
MORTALITY CONDITIONS – HUMAN MORTALITY DATABASE (HMD), 
SINCE 1751: 2516 FEMALE LIFE TABLES 
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FIGURE 25. FIVE-YEAR AVERAGE MAXIMUM REPORTED AGE AT 
DEATH (AMRAD) AND M+kSD(M+) BY GENDER, ENGLAND AND WALES, 
JAPAN, SWITZERLAND AND SWEDEN 
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FIGURE 26. CORRELATION BETWEEN THE STANDARD DEVIATION OF 
THE AGES AT DEATH ABOVE M (SD(M+)) UNDER THE ASSUMPTION OF 
THE NORMAL MODEL AND THE FORCE OF MORTALITY AT M ( µ(M)) – 
HUMAN MORTALITY DATABASE (HMD), SINCE 1751: 5003 MALE AND 
FEMALE LIFE TABLES 
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FIGURE 27. CONVERGENCE BETWEEN THE MODAL AGE AT DEATH 
(M) AND THE AGE AT l(x)=e-1 IN ENGLAND & WALES, JAPAN, SWEDEN, 
AND SWITZERLAND, FEMALES  
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FIGURE 28. THE AGE DISTRIBUTION OF DEATHS FOR JAPANESE 
FEMALES, 1995-1999: ’S FROM THE PERIOD LIFE TABLE (DOTS) AND 
ESTIMATES OBTAINED BY FITTING A MODEL TO THE DATA (SOLID 
LINE).* 

xd1

(a) Fitting the Lexis model (right half of normal distribution) to life table ’s. ** xd1

 
(b) Fitting the three-parameter logistic model to life table ’s. xd1

 
* Fitted by applying the method of maximum likelihood to life tables as in Thatcher 
(1999). ** The parabolic function was fitted to pre-modal mortality data. 
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FIGURE 29. THE RATE OF RELATIVE D(X) DECREASE FOR THE 
THREE-PARAMETER LOGISTIC MODEL FITTED TO POST-MODAL 
MORTALITY AMONG JAPANESE FEMALES, 1995-1999. (THE LEFT 
ASTERISK IS AT THE MODAL AGE AT DEATH AND THE PLUS MARK 
INDICATES THE POINT OF INFLECTION.) 
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