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Abstract  

 

The need to combine spatial data representing socio-demographic information across various and 

incompatible spatial units is a common problem for demographers.  A particular concern is 

computing small area trends when aggregation zone boundaries change during the trend interval.  

To combine population counts across incompatible tract geographies corresponding to successive 

census enumerations, the authors propose dasymetric areal interpolation using a pre-classified 

urban land cover data layer.  This solution is preferable to traditional re-aggregation techniques.  

A test of the interpolation technique using the National Land Cover Dataset (NLCD) shows 

significant error reduction over area weighted interpolation of the same data.  The NLCD 

compares favorably with other common techniques when considered on the basis of accuracy, 

precision and ease of use. 
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Introduction 

 

 This study proposes accurate areal interpolation as a solution to the common spatial 

analysis problem of combining incompatible spatial data, e.g. temporal analyses of socio-

demographic trends from census tracts.  We begin by discussing the problem and the traditional 

solution of re-aggregation to create a synthetic system of compatible zones.  A discussion of 

areal interpolation using Geographic Information Systems (GIS) follows, including a description 

of the steps involved that can be followed by demographers with access to a GIS.  The authors 

propose the US Geological Survey’s National Land Cover Dataset (NLCD) data set as a highly 

suitable spatial data layer for performing areal interpolation of spatially aggregated incompatible 

data.   

 The authors will then present a case study test of the accuracy of tract level population 

estimates computed using the NLCD data and dasymetric areal interpolation.  Interpolated 

estimates are benchmarked against a reference set of tract population counts generated from 

block counts, and the computed errors are mapped, analyzed and compared to the corresponding 

error distribution of a set of estimates interpolated using a simpler technique with more 

restrictive assumptions.  In light of these findings dasymetric areal interpolation using the NLCD 

data layer is evaluated relative to alternative techniques with respect to count accuracy, 

geographic precision, and ease of computation. 

 

 

Theoretical Background 

 

 An important methodological problem in spatial demography is the frequent need to 

combine incompatible spatial data.  Incompatibility, in such situations, means data must be 

combined in a single record for analysis that are aggregated (or coded, in the case of microdata) 

to two or more superimposed zone systems, and that in some local areas within the region the 

zone boundaries of one zone system cross the boundaries of the other zone system.  If boundaries 

of zones in the study area never cross boundaries of the other, superimposed zone system, the 

systems are nested with respect to each other.  In nested zone systems, zones are either a perfect 

match in each system or, in other cases, whole zones in one zone system can be reaggregated to 

areas corresponding perfectly to one or more zones in the other system and the counts summed.   

The typical problem of incompatible spatial data in demography is the need to combine 

tract level population and subpopulation count data for the same region pertaining to two 

successive census enumerations, in order to compute an exhaustive and mutually exclusive set of 

tract level trends for the time interval. Other studies, notably in the contextual effects modeling 

of microdata and in the metropolitan analysis of microdata, have encountered similar difficulty in 

the geoprocessing of data aggregated to incompatible area units.   

In the past, investigators have typically sought to solve the problem of combining 

spatially mismatched data by re-aggregating area units from two superimposed zone systems to 

the zone coverage containing the smallest possible compatible re-aggregation zones.  Compatible 

re-aggregation zones are a synthetic zone system consisting only of one or more whole area units 

in both original zone systems to which data are aggregated.  It is not always necessary for zones 

to be nested in order to create compatible re-aggregation zones.  It is possible to re-aggregate 

areas where zone boundaries from one system cross the boundaries of the second system’s zones 

using only whole zones from both zone systems.  But this normally requires that a larger number 

of zones in both systems be combined, often resulting in synthetic re-aggregation zones that are 

much bigger than the normal scale of the original zones.  In Figure 1 we can see certain areas, for 



example in the south and southeast of the study area, that experienced rapid population growth 

between 1990 and 2000.  Consequently, many of the 1990 tracts in these areas split into two, 

three or more new tracts.  Moreover, in some cases, these fragments of former tracts were re-

aggregated into new tracts that combine territory from two or (rarely) more previous tracts in 

order to maintain near-target tract population levels.   In other words, many 1990 tracts did not 

neatly split or merge with other 1990 tracts when the 2000 tract geography was created, but 

rather in a number of cases a 1990 tract was simultaneously split and partially merged. 

 

 
 

Figure 1.  Temporal change across complex zone geographies (US Census tracts) 

 

Superimposed zone systems from different, non-standardized sources thus routinely cross 

each other’s boundaries.  The complex territorial recombinations typical of geographic area 

changes over time for census tracts and other data series aggregation zones, and other such 

mismatches, frequently lead to situations in which systems of hundreds of zones would need to 

be reduced to fewer than ten re-aggregation zones in order to match geographies.  Such an 

outcome renders appropriate-scale analysis of local variation within a region impossible.  To 

cope with these situations, investigators must choose between extreme exaggeration in the scale 

of some zones included in their analyses, or deleting the observations associated with the 

troublesome zones.   

 Areal interpolation is a more elegant and, with the use of geographic information systems 

(GIS), often easier solution to matching incompatible data aggregation zones than the re-

aggregation approaches described above (cf. Eicher and Brewer, 2001; Goodchild et al., 1993; 

Gotway and Young 2002).  Moreover, because re-aggregation inevitably involves situations in 



which complex boundary changes leave analysts with no solution that would preserve both the 

processing protocol and the appropriate scale of area units, areal interpolation can be assumed to 

be more geographically precise and more reliably exhaustive of the study area territory.  Areal 

interpolation refers broadly to techniques that assign data from one or more sets of geographic 

areas to which data are aggregated (the source zones) to another incompatible and superimposed 

set (the target zones) using spatial algorithms.  In current practice, most of these algorithms 

exploit the map overlay capabilities of GIS (Longley et al., 2005).   

The simplest type of areal interpolation is area weighted interpolation, which requires no 

information besides the geography of both sets of zone units and the counts to be interpolated 

from the source to the target zones (Goodchild and Lam, 1980).  In area weighted interpolation 

the two incompatible zone systems describing a given region are superimposed and intersected, 

creating a set of intersection zones, each of which describes a unique pair of one source and one 

target zone (Flowerdew and Green, 1992; Reibel and Bufalino, 2005).  Each intersection zone is 

assigned a fraction of its respective source zone’s count corresponding to the proportion of the 

source zone’s area occupied by the intersection zone.  The intersection zone counts can then be 

summed across their respective target zones to complete the integration of data to the 

incompatible zone system. 

It is immediately apparent that area weighted interpolation relies on the assumption that 

there are no internal variations in count density within any source zone, an assumption that is not 

generally warranted.  All other area interpolation techniques seek to improve the accuracy of 

estimates by bringing to bear meaningful information regarding local density variations of counts 

within the source zones.  Pycnophylactic smoothing techniques use the density surface of the set 

of source tract counts themselves, and create fine grained, smooth estimated density gradients 

inside the source tracts by interpolating each tract’s count internally based on the count densities 

of adjacent tracts (Tobler, 1979).  The resulting estimated population surface can be used as 

locally detailed geographic information as-is, or it can be re-aggregated to another zone system 

that is incompatible with the first.   These smoothing techniques, however, require a relatively 

high level of geostatistical and geoprocessing skill, and can introduce error when (as is the case 

with census tracts) count density gradients are not in fact typically smooth up to and beyond tract 

boundaries.  Indeed, census tracts frequently have abrupt population density changes that 

coincide with the distinctive features in the built environment (such as major highways and strips 

of abandoned brown fields) that are typically chosen as tract boundaries. 

 The other general approach to areal interpolation that seeks to apply information about 

internal source zone density gradients involves dasymetric mapping.  Dasymetric maps “depict 

quantitative areal data using boundaries that divide the mapped area into zones of relative 

homogeneity with the purpose of best portraying the underlying statistical surface” (Eicher and 

Brewer, 2001).  In the context of areal interpolation, dasymetric techniques mean that a 

(typically fine grained) ancillary data layer is used as a proxy for count densities.  This additional 

layer is superimposed on the source zones from which counts are to be interpolated, and counts 

are re-assigned to a higher resolution within the source zones corresponding to the detailed 

geography of the ancillary data values.  The counts are then re-aggregated from this relatively 

fine grained surface or zone system to the set of target zones.   

 A considerable variety of ancillary data layers has been brought to bear on the question of 

dasymetric areal interpolation, with corresponding variation in the difficulty of spatial data 

processing and the quality of results.  Most studies have used remotely sensed urban land cover 

surface data as a weighting factor, but some have used objects such as the street grid (Reibel and 

Bufalino, 2005), or control zones corresponding to functional areas (Goodchild et al., 1993; 

Reibel and Agrawal, 2005).  Dasymetric mapping using remotely sensed urban land cover data 



(Fisher and Langford 1996, Langford and Unwin 1994) as well as Reibel and Bufalino’s street 

weighting technique, have proven to be relatively accurate.  Moreover, the larger number of 

studies using land cover data, relative to smoothing and other dasymetric weighting techniques, 

and the robust tests documenting its accuracy, including re-sampling simulations in Cockings et 

al., (1997)  make land cover weighting the normative approach to areal interpolation.  The major 

difficulty of urban land-cover weighted areal interpolation until now has been the need to 

transform raw images into an information surface, a difficult procedure called digital image 

processing or classification (Schowengerdt, 1997; Jensen, 1996; Lillesand and Kiefer,1987).  

 

 

Data and methods 

 

This study provides an applied example and test of urban land cover weighted areal 

interpolation using a detailed pre-classified land cover data layer.  These data and methods are a 

good fit for demographers who use GIS but are not GIS specialists because they offer the power 

and accuracy of land cover weighted interpolation without the need to classify remotely sensed 

images.  Our approach uses land cover data derived through the National Oceanic and 

Atmospheric Administration’s (NOAA) Coastal Change Analysis (C-CAP)
1
 Program.  Because 

these data are integrated into the US Geological Survey’s National Land Cover Dataset (NLCD), 

we hereafter, refer to the dataset as the NLCD.  The NLCD data is free, seamless and 

downloadable from http://seamless.usgs.gov/website/seamless/viewer.php.  These high quality 

data, derived from Landsat satellite images, provide pre-classified information on land cover 

category types, including urban land cover, at 30 meter resolution for the entire United States.  

The authors will provide a set of steps to guide investigators as they perform interpolations using 

these data, as well as a discussion and examination of the estimation errors in the interpolated 

population counts in our example.   

In this example, the authors will perform land cover weighted areal interpolation using 

the NLCD data to interpolate 2000 census tract population counts in a study area in eastern Los 

Angeles County to the 1990 census tract geography.  The study area consists of the San Gabriel 

Valley region and adjacent areas to the east extending to the border of Los Angeles County 

(Figure 2).  The study area contains cities of over 100,000 persons, heavy industrial areas, dams 

and spillways, college campuses, old citrus packing towns, low density suburbs and a border of 

hills and mountains.  It is therefore generally representative of the various landscapes within Los 

Angeles County with the exception of coastal areas and the metropolitan central business district. 

 

 

 

 

 

                                                 
1
 Information about the NOAA’s C-CAP program and its integration into the USGS NLCD effort can be found at 

http://www.csc.noaa.gov/crs/lca/ccap.html. 



 
 

Figure 2.  San Gabriel Valley study area 

 

 

 The interpolation consists of a series of steps, mostly performed in a GIS environment 

using ArcGIS 9.0 (Environmental Systems Research Institute, Redlands, CA).  The weighting 

regression is performed in the statistical package SPSS (SPSS Inc., Chicago, IL).  Most popular 

GIS packages lack integrated regression and statistical analysis functionalities, but it is a simple 

matter to transfer tabular data back and forth between the two packages by exporting the tables to 

Dbase (.dbf) file format, which is accessible by both packages.  The first task is to fit a set of 

raster (grid cell) weights corresponding to inhabited land cover types.  To do this, the authors 

computed the proportion of each source (2000) tract’s land area consisting of 30x30 meter grid 

cells of each land cover type which might reasonably be expected to be inhabited.  The tracts’ 

populations were then regressed on the areas of inhabited land cover types using ordinary least 

squares (OLS) regression using SPSS
2
.  The resulting coefficients are the raster population 

weights for each urban land cover type
3
.  The regression derived weights for our best fitting 

raster land cover model (R
2
=.873) are given in Table 1. 

 

 

                                                 
2
 Flowerdew and Green (1989) note that Poisson regression is theoretically preferable for modeling counts.  In this 

study and in others OLS coefficients tend to be almost identical to Poisson coefficients for the same variables and 

data in areal interpolation (cf. Fisher and Langford, 1995; Langford et al., 1991).  Using OLS gives weights the 

conceptual simplicity that coefficients are a linear function of population density. 
3
 Weighting regressions for areal interpolation should be fitted without intercepts, since areas with no inhabitable 

land cover are expected to have no population. 



Table 1.  Weights derived by regression for inhabitable land cover categories 

 

Value Land Cover Type Weight 

3 High Intensity Urban Residential 0.808 

4 Low Intensity Residential 0.374 

5 Suburban Residential 0.274 

   

F statistic = 809.76 sig = .000   

 

 

Once the weights have been computed, they are applied to the NLCD data layer’s raster 

surface to generate a population surface map.  However, because the model only accounts for 

87.3% of the variation in the source zone population, the weighted estimates in the population 

surface must be scaled by the ratio of their respective source zone’s observed population to its 

fitted population to account for the proportion of source zone population not predicted in the 

model, thus preserving the pycnophylactic property (Tobler 1979). To do this, the grid cells 

forming the raw estimated population surface were multiplied by the ratio of their respective 

source tracts’ observed populations to the source tract’s fitted population computed by summing 

the raw estimates across the source tract’s grid cells:   
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Where Gs is the scaled population estimate of grid cell G, GW is the raw weighted population 

estimate of grid cell G, TG is the observed population of the source tract of grid cell G, and GT̂ is 

the fitted population of the source tract of grid cell G derived by applying the weights to all grid 

cells and summing across all grid cells in source tract T. 

The result is the scaled population estimate surface map shown in Figure 3.  Figure 3 

shows the highly erratic and discontinuous nature of the study area’s population distribution.  

Most of the less populated (thus lightly shaded) areas consist of steep hills; with two major 

exceptions: the San Gabriel River flood plain and quarrying area running southwest from the 

north central part of the map, and the major industrial corridor along the Pomona Freeway that 

shows up as a light colored upturned crescent in the southern central part of the map.  Dense 

urban areas are Pomona in the east, Pasadena in the northwest, and in the southwest, smaller 

dense concentrations in the blue collar suburbs of Alhambra, Montebello, El Monte and La 

Puente. 

 



 
 

Figure 3.  Scaled 2000 tract population counts derived from using the NLCD as a 

weighting layer where population estimates are now allocated to each grid cell. 

 

 

While population surface maps are simply a processing stage in areal interpolation to 

combine data across incompatible zone systems, such maps are valuable information in 

themselves, as they are useful for exploratory data analysis and the detailed display of small area 

populations and/or their characteristics. Next, the grid cells in the population surface map are re-

aggregated to the target zone geography, 1990 census tracts in our case, and the grid cell 

estimates summed across their respective target tracts to yield estimates of the source counts 

interpolated to the target zones, i.e. the 2000 populations of the 1990 tracts. 

The above steps complete the interpolation.  Our test of the accuracy of the NLCD land 

cover weighted interpolated population estimates requires three additional steps:  1) the 

computation of a set of benchmark counts corresponding to the true 2000 populations of the 

1990 tracts; 2) computation of the estimation errors via subtraction from the benchmark counts; 

and 3) the exploration and analysis of the error distribution.  The benchmark counts for the 2000 

populations of the 1990 tracts are computed by aggregating the 2000 census block counts to the 

1990 census tract geography, using the technique of block centroid aggregation described in 

Reibel and Bufalino (2005).  The errors in estimation computed by subtraction from these 

benchmark observed counts are explored and mapped.  Finally, the error distribution and root 

mean square (RMS) errors for the NLCD weighted tract estimates and corresponding 

interpolated estimates from simple area weighting are statistically analyzed and tested for 

significant improvement in accuracy. 



Results 

 

Figure 4 illustrates the 2000 weighted and scaled population estimates at the grid cell 

level aggregated to the 1990 tract geography.  While both Figures 3 and 4 display the same 

estimated population distribution, the resolutions differ markedly, and thus, so too does the 

user’s ability to visualize the variation of the population distribution across space.  Hence, the 

methods described in this paper allow for both the generation of a detailed population surface 

and the creation of interpolated estimates to combine data drawn from superimposed but 

incompatible zones.  In Figure 4, the 1990 census tracts with the largest estimated 2000 

population counts are generally those that grew the fastest during the 1990s.  Most of these 1990 

tracts were split, often in complex ways that included some merges, after the 2000 enumeration 

to preserve the desired range of tract populations, so it is natural for such 1990 tracts to have 

very large populations when we use our technique to effectively reverse the splits.  In our 

example, 1990 tracts with estimated 2000 populations of 13,000 to nearly 30,000 can be seen in 

mostly upscale new hilltop developments in Walnut, Rowland Heights and Diamond Bar in the 

southeast and La Verne in the northeast, as well as distinctly less prosperous El Monte and parts 

of north Pasadena further west.   

 

 
 

Figure 4.  2000 population counts aggregated to the 1990 tract geography based on the 

population surface illustrated in Figure 3. 

 



Figure 5 illustrates the distribution of estimation errors in the interpolated 2000 

population estimates of 1990 tracts in the study area. Spatial autocorrelation tests reveal that the 

errors are distributed in a spatially dispersed pattern (p ≤ 0.01).  Despite the lack of clustering 

implied by this observed negative spatial autocorrelation, a close reading of the error map reveals 

clear patterns of error associated with specific land uses and socio-demographic areas.  The high 

positive errors are concentrated in the industrial areas of Irwindale, El Monte and the City of 

Industry and in campus neighborhoods including Cal Poly Pomona and Cal Tech in Pasadena.  

Presumably, some industrial and academic buildings are coded as apartments in these areas, 

causing overweighting in the estimation process.  In the west of the study area, in San Gabriel 

and Monterey Park, other isolated high positive error tracts are gentrifying neighborhoods 

completing their transition to from mixed and heavily Hispanic to majority Chinese populations.  

In the process, many larger houses are being built and inhabited by smaller households.  The 

result is overestimation of the population based on land cover weighting.  In the far southeast of 

the study area is another high positive error tract in upscale Diamond Bar.  This neighborhood is 

new development but it also has similar large homes and small households, and is also heavily 

Asian, including many Chinese, Filipinos and Koreans. 

 

 
 

Figure 5.  Errors in the aggregated 2000 population estimates (Figure 4) compared to 

the benchmark dataset  

 



High negative errors are found in poor, less densely built peripheral neighborhoods that 

are overwhelmingly Hispanic and heavily populated by more recent immigrants.  Severe housing 

overcrowding in such areas, which include western Pomona and parts of Hacienda Heights, La 

Puente and Covina, creates much larger actual populations than the weighting scheme estimates 

given the relatively low density residential built environment. 

We can interpret from Table 2 that the error distributions for both the NLCD land cover 

weighted estimates and the area weighted estimates are reasonably symmetrical with means near 

zero, and that they correspond to approximate Gaussian normality.  Overall, the NLCD weighted 

distribution has fewer large errors in both the negative and positive direction:  The maximum and 

minimum error values are both greater in the area weighted model and the error values at the 

extremes (>90
th
 and <10

th
 percentiles) were also greater in the area weighted model.  This was 

expected; the NLCD estimates should perform better because they bring to bear information 

about the internal count density variations within the source zones from which counts are re-

assigned via interpolation. Error reduction was not uniform at every level of the distribution, 

however.  Surprisingly, a range of positive errors in the NLCD weighted distribution, those 

between the 60
th
 and 80

th
 percentiles, are in fact slightly larger than the errors at corresponding 

percentiles of the area weighted distribution. 

    

 

Table 2:  Error Distributions 

 

  

NLCC 

Weighted 

Area Weighted 

Min -607.5 -890.1 

Max 542.8 866.5 

Percentiles     

1 -447.0 -585.9 

5 -197.3 -236.4 

10 -137.3 -156.7 

20 -79.3 -83.3 

30 -43.6 -50.0 

40 -23.2 -20.7 

50 -3.0 -4.4 

60 15.9 8.7 

70 37.1 35.6 

80 70.0 67.7 

90 134.0 146.8 

95 205.3 282.2 

99 373.9 591.6 

 

In order to compare overall error levels for the two distributions, and to test whether the 

observed error reduction associated with one technique over the other is statistically significant, 

we must compute an overall error statistic.  The simple statistic most frequently used for error 



distributions is root mean square (RMS) error.  RMS error is essentially the standard deviation of 

the error distribution: 
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Where Pi is the benchmark population of zone i, iP̂  is the estimated population of zone i, and m 

is the number of zones in the metropolitan or other study area.  Table 3 shows that the RMS for 

the NLCD weighted estimates is 131.93, while that for the area weighted estimates is 173.45.  

The degree of error reduction achieved by the NLCD weighting over the area weighting is thus 

23.94%.  To determine whether this error reduction is statistically significant, the authors 

performed a difference of proportions test on the RMS errors of the two error distributions.  The 

test statistic was highly significant (.001 < probability of inference error < .005).  We can 

conclude that in our example, the dasymetric areal interpolation using the NLCD pre-classified 

land cover data as a weighting layer achieves a substantial and statistically significant error 

reduction over area weighted areal interpolation of the same data and study area. 

 

 

Table 3:   Error Analysis 

 

  
Area 
Weighted 

NLCD 
Weighted 

N (obs) 281 281 

Variance 30084.9 17462.9 

Pooled Standard 
Error 13.00805 

RMS 173.45 131.93 

Error Reduction 23.94% 

T Stat, difference of 
proportions 3.191871 

Significance, 
difference in RMS .001 < prob. Error < .005 

 

 

Discussion 

 

 The authors have described the problem of combining spatially incompatible data in 

demographic research, and briefly described two families of solutions to the problem:  re-

aggregation and estimation by areal interpolation.  On the merits, any properly executed areal 

interpolation, even the relatively crude area weighting technique, will better preserve the scale 

and exhaustiveness of the zones used for spatial data being processed, i.e. its geographic 

precision, than will re-aggregation.  This is because when mismatches become complex, re-

aggregation techniques force investigators to choose between very large re-aggregation zones 

and dropping problem areas from the analysis – both solutions that are likely to introduce bias in 



the analysis of spatial data sets so processed.  Moreover, with the use of GIS, areal interpolation 

is also much easier than re-aggregation. 

 This study provides both a test of and a guide for using a relatively accurate dasymetric 

areal interpolation technique with a weighting data layer that does not require digital image 

processing to classify urban land cover information.  The NLCD weighted estimates described in 

this study are considerably more accurate than area weighted estimates derived from the same 

data and geography.  We believe that the NLCD data, when used for dasymetric areal 

interpolation, provide a very good combination of accuracy, preservation of data at appropriate 

scales, and ease of estimation.  We hope that demographers will consider areal interpolation 

when they are performing local and neighborhood analysis that requires combining incompatible 

spatial data, and we recommend the NLCD weighting approach described here.  We also hope 

that the availability of GIS to help solve difficult data processing problems will facilitate and 

help promote demographic research on urban and spatial research questions in demography. 
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