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Abstract 

 

Preliminary findings show that the age structure of a population can be useful in 

estimating the age composition of outmigrants.  Demographers have always known that 

population pyramids reflect the fertility, mortality and migration processes of a region.  

This research, on the other hand, uses the age composition of a population to forecast the 

profile of outmigration.  This work is motivated in part by changes in U.S. Census survey 

strategies that present new challenges for measuring migration.  Initial investigation 

(presented in the attached paper) was based on state populations in 1995 and the 

schedules of age-specific outmigration between 1995 and 2000.  Ongoing work extends 

these analyses using the population structure to categorize the shape of the outmigration 

profile (monotonically decreasing through the later years, peaking in the retirement years, 

or increasing for the oldest ages).  Other extensions examine the generalizability of the 

state findings for smaller geographic units (MSAs and counties).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

I. Introduction 
 

The age breakdown of a migrating population is fundamental for demographers 

and policy analysts who want to make accurate population projections.  In the U.S., 

techniques that estimate age distributions of migrants have received new interest since 

census taking strategies were revised.  Traditionally, accurate age-specific migration flow 

estimates for counties, metropolitan areas, and states were made possible by the large 

sample who responded to the “Where did you live 5 years ago?” question on the 

decennial U.S. census long-form questionnaire.   Replacement of the decadal long-form 

questionnaire with the American Community Survey (ACS) was motivated by the lower 

cost of administering the ACS and by the advantages of more accurate population counts 

during intercensal years.  However, some attributes of ACS chart unknown territory that 

compel demographers to develop independent methods for measuring migration that 

might then be used to inform the use of the ACS for this purpose.   One attribute of ACS 

is that it uses a smaller sample size than the decadal long-form sample.  As a 

consequence, ACS migration data disaggregated by age may provide unstable and 

unreliable estimates of age-specific migration even for the larger geographic units.   To 

overcome the problems of the smaller sample size, the ACS will rely on data that are 

averaged over five years.  These will be inherently imprecise for annual estimates as well 

as age-specific estimates.  Since the ACS migration question asks about residence last 

year, five-year averages will result in data that do not clearly delineate the calendar year 

or the age category.  

 



 

In response to these challenges several indirect estimation approaches have been 

suggested.  The most straightforward of these is the residual method, which estimates 

age-specific net migration by subtracting the observed population at each age from the 

projected age-specific population, based on assumptions of mortality and fertility 

(Pittenger, Castro).   Another method infers the age structure of migrants from aggregate 

interregional flows by statistically imposing the age breakdown observed in a previous 

period (Rogers, A, Willekens, F, Raymer, J, 2003).  Yet another method infers age-

specific migration rates of older populations from available migration data of those under 

five years of age (Rogers and Anselmi, 2004);  

The method proposed in this paper adds to the existing body of work and 

supplements our understanding of how auxiliary data can be used to fill in the gaps 

caused by missing or sparse migration data.   Central to the method is the age profile of a 

population, which is often used as evidence of the historical fertility and mortality 

patterns that give rise to the population structure.  For example, Figure 1 shows the 

contrast in age pyramids of populations in Mexico in 1970 and Sweden in 1974.  The 

Mexico population pyramid suggests high rates of natural increase and mortality 

increasing fairly rapidly with age.  Sweden demonstrates a population pyramid that is 

more typical of low rates of natural increase and morality rates that don’t increase 

appreciably until after age 60.  For the same time period, Figure 2 reveals the age profiles 

of internal migration for Mexico and Sweden, and it is clear that the two population 

structures give rise to very different migration schedules.   Can the age pyramid of the 

population be linked to the age profile of migrants in a general way, one that is useful 



regardless of place or time?  In this paper we offer a foundation for how the population 

structure may influence the migration schedule, and we establish a predictive model that 

is the essence of the method for indirectly estimating the migration profile.  We use the 

age-specific proportions of the total out-migration flows for the 50 states and the District 

of Colombia between 1995 and 2000 as the observed data, and the method is designed to 

predict the age composition of migrants leaving an area during a five-year period on the 

basis of the population age structure at the beginning of the period.  We describe the 

method, which uses commonly available data and simple measures of population 

composition to predict the age composition of the out-migrating population. 

It is well documented that profiles of age-specific migration have similar shape 

that is consistent over space and time, and that the profiles can be precisely represented 

by the Rogers-Castro (1981) model schedule, which is a smooth parameterized multi-

exponential function.   Initially the 51 observed profiles are fitted to the 7-parameter 

Rogers-Castro model schedule, and then regression models are constructed to predict the 

variation in each of the 7 parameters of the schedules using measures of the age structure 

of the state population as the explanatory variables.   

The regression models are calibrated to the predict the seven parameters and from 

the predicted parameters a migration schedule is estimated for each of the states.  The 

observed and the predicted migration model schedules for each of the states are compared 

and various measures of goodness of fit are evaluated.   In addition, the effectiveness of 

the regression approach is compared to the effectiveness of the “standard” model 

schedule, which is simply the schedule generated from the most common values of the 7 

parameters as documented in previous research.  The standard schedule does not use any 



information about the population composition, and can be considered the simplest 

predictive approach.      

Of the sections that follow, section II details the construction of the observed data 

and the procedures used for calculating the migration proportion schedules.   Section III 

describes the 7-parameter Rogers-Castro model migration schedule (Rogers, Castro, 

1981) and its documented characteristics.  The framework that specifies the relationships 

between model schedule parameters and measures of population age structure is 

developed in section IV.  And in Section V, the regression prediction equations are 

estimated and the results are reported and evaluated.  The final section presents 

conclusions about the method, and a discussion of the viability of the method, its 

shortcomings, and planned extensions.   

    

II. The Observed Outmigration Data 
 

The age-specific out-migration data for the states came from the Census 2000 

Migration DVD provided by the US Census Bureau.  It gives counts of persons who 

changed their state of residence between 1995 and 2000 and who lived to be counted in 

2000.  Based on a person’s age in 2000, these counts are disaggregated into five-year age 

categories, beginning at age 5 and ending at age 85 or older, i.e. 5-9, 10-14, 15-19,….80-

84, 85+.  From these data we backcasted to get the numbers of outmigrants from each of 

the 50 states by age category in 1995, i.e. 0-4, 5-9, ….80+.    These counts of migrants 

within each age category, who survived to 2000, are divided by the total number of 

persons who left that state after 1995 and survived to be counted in a different state in 

2000.    These are called the observed age-specific proportions or formally N(x to x+4) 



where (x to x+4) is the age group which begins with age x, and N(x to x+4) is the 

proportion of the total number of outmigrants in the (x to x+4) age group in 1995. 

There are 17 observed N(x to x+4)s for each outmigration schedule.  The profiles 

of these data points are not smooth and consequently cannot be accurately represented by 

a model schedule.  Smoothing is a necessity, and this begins by converting the N(x to 

x+4), where (x to x+4) represents a 5-year age interval, to five N(x)s that represent the 

proportion of migrants associated with single year ages.    The first step was to assign the 

N(x to x+4) values divided by 5 to N(x+2), the proportion associated with age (x+2).  For 

example, for the age interval 0-4, N(0 to 0+4)/5 is assigned to N(2), the proportion 

associated with age 2.  Likewise, N(5 to 5+9)/5 is assigned to N(7).   The next step was to 

use cublic spline interpolation to smooth between the values of N(2), N(7),….N(82) and 

to get estimated N(x)s for all other single age groups.   (Advanced Systems and Design 

add-on to Excel.) After estimating the proportions for one-year age groups, the N(x) 

values were recalibrated so that the N(x)s for each state summed to 1. (Need to ask Lisa 

abou this… ).     The smoothing process resulted is the proportion of total outmigrants in 

each single year age category, N(0), N(1),….N(84). 

 

  III. The Rogers-Castro Model Migration Schedule 

 

Migration proportion schedules universally exhibit a common shape, and decades 

of research have shown that these profiles can be accurately represented with a 

multiexponential function, called the Rogers-Castro model schedule.    From previous 

work by Rogers, Castro and others, we have learned much about this model migration 



schedule, including how to interpret the parameters and the expected values ranges for 

each of the parameters.  Figure 3 displays a typical migration model schedule and its 7-

parameters.   Starting with relatively high levels during the early childhood ages, the 

“infant peak” is captured by the parameter a1.  Then the proportions decrease 

monotonically to a low point around age 10.  The rate of decrease is represented by the 

alpha1 parameter, also referred to as the pre-labor force slope.  This is followed by an 

increasing slope (lambda1) eventually reaching a peak (usually called the labor peak) 

between ages 15 and 22.  The peak is captured by the a2 parameter.   The schedule then 

decreases once again to the ages of retirement at a rate represented by the alpha2 

parameter, called the post labor force slope.  Finally the schedule levels off around some 

constant level (c).  Sometimes a post-labor force component appears showing a bell-

shaped curve that represents the raised prevalence of migration during the retirement 

years, or other times there is an upward slope that increases monotonically to the last age 

included in the schedule.   These post-labor force components require extensions to 

model schedule from 7 parameters to 9 or 11 parameters.  Given the purposes of this 

paper, the additional complexity of 9 or 11 parameters was not warranted.    

Castro and Rogers (1983) demonstrated that the shape of the migration profile can 

provide a wealth of information that can be used to describe the characteristics of the 

migrating population, such as, “Is it male or female dominate?”, or “Is the pre labor force 

migration reflective of low or high family dependency patterns?”   For the purposes of 

this paper, the smoothed observed data values for each profile are fitted to this model 

because it parsimoniously and accurately represents each profile and because it reduces 

the 85 data values in a migration profile down to the 7 parameters of the model schedule.  



The fitting process was done the nonlinear regression procedure in SPSS.    The average 

R
2
 value generated from correlating the smoothed data with the data implied by the fitted 

model schedule is .98 across the 51 states.  R
2
 values ranged from 0.95 for Maine (Figure 

4a) to 0.99 for Pennsylvania (Figure 4b).   

The variation in the parameters can be summarized in Table1 and Figure 5.  

 

Table 1. Summary of Parameter Variation  

 

  alpha1 a1 alpha2 a2 mu2 lambda2 c 

average 0.0169 0.0484 0.0448 0.0738 17.2394 0.2354 0.0011 
standard 
deviation 0.0027 0.0158 0.0085 0.0137 2.6492 0.0873 0.0004 

maximum 0.0219 0.0952 0.0664 0.1000 23.6171 0.4104 0.0034 

minimum 0.0105 0.0220 0.0297 0.0501 15.0000 0.1000 0.0010 
coefficient of 

variation 0.1624 0.3256 0.1899 0.1859 0.1537 0.3707 0.3459 

 

 
 

 

III.  Linking Population Composition with Outmigration Profiles 

 

  The foundation for linking population profiles with migration schedules is 

guided by the general form of the Rogers-Castro migration model schedule and the 

interpretations of the parameters; by the scant literature that documents how population 

composition can influence migration profiles; and by well reasoned arguments and 

relationships suggested by the data.  

 Predicting migration schedules presents challenges that stem from the fact that 

they are not captured by a single variable, but by a mathematical function, which is 

defined uniquely by 7 parameters.  To add to the complexity, the parameters are not 

equally important in determining the shape of the profile, and some parameters are highly 

correlated with others.  (See Table 2.)  One parameter having a relatively large value may 



necessarily restrict the range of another parameter value.  This is intuitive since that the 

sum of all age-specific proportions of the migrating population must total 1.   Therefore, 

a large contribution at one age will necessarily reduce the contributions of other ages.    

  

Another guiding principal comes from the general shape of the Rogers-Castro 

model schedule.   This gives us rough guidelines for the ages with the highest 

propensities for migration and the relative size of the age groups in the population will 

effect the representation among migrants.            

 To understand these dependencies, a preliminary principal components analysis 

was done to partition the parameters of the model schedules into components, or subsets 

of parameters that are intercorrelated, yet the subsets are uncorrelated with each other.  

89% of the variance in the 7 parameters of the 51 schedules are represented by three 

principal components. These results are reported in Table 3.   The first component 

accounts for 49% of the variance and is a composite of the child migration parameters 

(a1, alpha1), the labor slope (lambda1), and the age of peak migration (mu2).   This 

component will be referred to as representing “EarlyYears Migration.”  The second 

component accounts for 21% of the variance and is comprised of two parameters, a2 (the 

height of the career peak) and alpha2 (the post labor slope).  This component is named 

the “Middle Years Migration.”  The third component accounts for 17% of the variance 

and is represented by parameter c (the minimum value of the schedule) and is called 

“LateYears Migration” . 



 

  

 

Table 2.  Correlations of Parameters 

 Alpha1 a1 alpha2 a2 mu2 lambda2 c 

alpha1 1.0       

a1 .639 1.0      

alpha2 .303 .477 1.0     

a2 .080 -.104 .717 1.0    

mu2 .534 .677 .661 .334 1.0   

Lambda2 -.441 -.724 -.422 .021 -.779 1.0  

C -.202 .103 -.015 .132 .311 -.206 1.0 
 
  
 
Table 3.  Principal Component Analysis, Rotated Component Matrix 
 

Component 

  1 2 3 

a1 .737 .104 -.430 

al1 .926 .009 -.013 

lam2 -.872 -.053 -.220 

a2 -.098 .969 .069 

mu2 .808 .424 .252 

al2 .431 .845 -.056 

C .099 .043 .952 

 
 
 

 

 

 

The separation suggested by the principal components analysis is illustrated in 

Figure 6.  And since the contribution to total variance is greatest for the first component 

we begin by drawing linkages between population composition and the parameters 

represented in the first principal component.   

 

Early Years Migration  

 



           One principal documented in the literature is that migration is age selective. 

Among adults, young adults are the most mobile group in any population (Castro and 

Rogers, 1983), and in some special areas people show high migration propensities during 

the retirement years.  Among children in the dependent years, infants are the most 

mobile, and for them migration must occur within the family unit, suggesting that 

families with infants are more inclined to migrate than families with older children.                   

Variation in the infant peak (a1) parameter is likely to be explained in part by the infant 

dependency ratio, i.e the ratio of the number of infants (ages 0-4) divided by the 

population in the migrating years (15-34).  This measure is similar to a fertility rate, but 

the total number of men and women in the ages of peak adult migration is used as the 

base population.   Thus, we expect that for populations exhibiting high levels of natural 

increase, infants will be a larger component of the migration profile because family 

migration will be more prevalent.  Castro and Rogers (1983) confirmed this with 

sensitivity analyses and concluded that the shape of the migration proportion schedule is 

highly sensitive to changes in the dependency level.   

A second hypothesis is that the infant peak is influenced by the age distribution of 

the heads of households during the migration years.  This principal was reported by 

Castro and Rogers (1983) when they found through sensitivity analyses that the N(x) 

schedule is very sensitive to changes in the age distribution of family heads.  Based on 

Figures 7a and 7b, the height of the infant peak is likely to be positively related to the 

proportion of the population in the peak years of migration and in the beginning years of 

family formation, i.e. ages 20-24.  The three states show dramatic differences in the 

infant peak (Figure 7a), with Utah having the highest level, then Delaware and the lowest 



level is in Maine.  In Figure 7b the population distributions show Utah has the highest 

proportion in group 20-24 (.086) followed by Delaware (.067) and Vermont (.064).    

The alpha1 parameter captures the prelabor slope, and the larger the value the 

steeper the descent, which suggests more younger children than older children are 

migrating with their parents.  From Figures 7a and 7b it is apparent that this slope seems 

to be related to the size of the youngest group (ages 0-4) as compared to older group 

(ages 5-9).  This is called the infant-youth ratio.  For example, Delaware has the steepest 

slope (.095) and at the same time the infant-youth ratio is 1.02.   

Lambda2 is the labor slope parameter and a larger value implies a faster ascent to 

the labor peak.  Two hypotheses came from examining Figures 8a and 8b where West 

Virginia has the steepest slope (.41), followed by Nebraska (.25) and Delaware (.15).  

First, it appears that the age of the largest cohort in the career migration years (15 to 34) 

affects the labor slope.  The younger the largest cohort, the earlier the beginning labor 

migration and the steeper the slope.  In contrast, if the largest cohort is older the labor 

migration will be more dispersed over the age groups and the slope will be flatter.  West 

Virginia, for example, has its  largest cohort at age 18 versus Nebraska and Delaware 

where the age of largest cohort is 34.         

 A final hypothesis about the early migration profile parameters has to do with 

mu2, the peak age of labor migration.  Washington D.C. and Maine are examples of two 

extremes (Figures 9a and 9b). Washington D.C. has the older average age (mu2=20) and 

Maine has the younger average age (mu2=15).  From the population distributions in 

Figure 9b, the most striking difference between these two population distributions is the 

difference between the size of the cohort in ages 15-19 and the size of the group ages 20-



24.  In Washington D.C. the older group is much larger than the younger group (40,899 

vs 25,915) suggesting the large older cohort will influence the migration profile by 

shifting the migration peak to the right.  In Maine, the younger cohort is larger than the 

older cohort (85,515 vs 80.002) and this difference will shift the migration peak to the 

left.   

 

Middle Years Migration  

 

Based on the principal components analysis the parameter that represents the 

height of the career migration peak (a2) and the parameter that measures the post labor 

slope (alpha2) are highly correlated and are distinct from the other parameters in their 

contribution to the model schedule.  The parameter a2 is highest when the peak is most 

pointed suggesting that career migration is more concentrated at a single age or a cluster 

of ages.   This is unlikely if the population in the ages with the highest propensities for 

labor migration is dominated by the older cohorts.  This is suggested in the Figures 10a 

and 10b.  North Dakota shows a peaked profile and Nevada has a much flatter profile.  

The North Dakota population is more uniformly distributed through the years 20-24, 25-

29 and 30-34 (cohort sizes are 46,113; 43,394; 46,083).  In contrast, in Nevada there is a 

relatively large population in the later years of career migration.  In fact, the population 

increases during these years (cohort sizes are 92,170; 112.909; 140,350 respectively), 

which suggests higher proportions are migrating throughout these years and a flatter labor 

migration pea results.   



The other middle year migration parameter is alpha2.  It represents the decreasing 

post labor slope and the larger values indicate a more rapid descent.  Figure 11a 

demonstrates that Arkansas has a relatively flat post labor slope (alpha2=.029) and 

Washington D.C. has a more pronounced descending slope (alpha2=.070).  It is apparent 

from Figure 11a that a2 and alpha2 are correlated.  Where a2 (the peak) is higher, alpha2 

will necessarily be larger (steeper descending slope), and where a2 is lower, so too is 

alpha2.  In Figure 11b the differences in population distributions are most distinct with 

regard to the ratio of the population in the middle labor migration years (20-29) versus 

the early retirement migration years (50-59).  In Washington D.C. this ratio is 1.86 and in 

Arkansas the ratio is 1.35. 

 

Late Years Migration  

 

The c parameter captures the minimum value of the migration profile and this is 

determined by the level of migration in the late years.  Variation in this parameter is 

clearly linked to the size of the population in the late years, but specifically the relatively 

youthful late years when there is the highest propensity for migration (ages 65 to 74).  

Figure 12a shows Florida with the largest c value and Iowa and Utah have similar values 

for the c parameter, despite the evidence in Figure 12b that shows Iowa with a higher 

proportion of population in this category than Utah.  This may be because the effect of 

the proportion of the population in this age group on the c parameter may not occur until 

the proportion gets large enough.  For this reason a squared term might be necessary to 



define the relationship as curvilinear between the proportion of population in the ages 65-

74 and the variation in the c parameter.      

 

V.  Estimation Results 

 

The results of the regression models are reported in this section.  These are the 

results of regression models predicting the four early years parameters (Figure 13a).  

With relatively few variables explain substantial amount of variance in each of these 

parameters.  Each of the effects I explained in the earlier slides were significant in the 

regression models.  DO have some unclear relationships and that’s why we call these 

preliminary results.    

The results reported in Figure 13b confirm that the relative sizes of the adult 

cohorts are significant in their contributions to the middle years parameters.   Compare 

each older group to the one just younger.  Alpha2 is positively correlated with a2 (.70).  

But alpha2 related to the career-retirement ratio.  Middle labor years Ages20-29/early 

retirement ages 50-59  

Figure 14 summarizes the regression models in another way.  The baseline with 

the decreasing cohort size has the highest a2  which suggests that if the youngest adult 

cohort is the largest then career/labor migration will be more peaked.  If the adult 

population has a bulge at 20-24, a2 is smaller, or if the bulge is at 30-34 is larger than 35-

39, a2 is smaller.  But if the bulge occurs between ages 25-29 then there is an increase in 

a2.   What I gather is that relatively large cohorts at 15-19 or 25-29 will give a higher 

peak.  The early one may be caused by the “going off to college” phenomena or the 



continuing education effect.  The later one might be caused by the “going off to first 

professional job” effect. 

 

 

 

 

 

 

 

 



Figure 1. National Age Pyramids:

Mexico, 1970 and Sweden, 1974
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Figure 2. Interregional Migration Profiles:

Mexico, 1970 and Sweden, 1974
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Figure 4a. Maine Migration Profiles (Smoothed Observed 

vs Model Schedule) 
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Figure 4b. Pennsylvania Migration Profiles (Smoothed 

Observed vs Model Schedule) 
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Figure 4c. New York Migration Profiles (Smoothed 

Observed vs Model Schedule) 
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Figure 5. The Rogers-Castro Model Schedules for Outmigration, 51 States
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Figure 7a. Variations in the Infant Peak (a1) and the Prelabor Slope (alpha1)
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Figure 7b.  Population Distributions
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Figure 8a. Variations in the Labor Slope (lambda2)
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Figure 8b. Population Distributions
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Figure 9a. Variation in the Mean Age of Migration Parameter, Mu2
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Figure 9b. Population Distributions
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Figure 10a. Variations in the Height of the Career Peak Parameter, a2

0

0.01

0.02

0.03

0.04

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Age

P
ro

p
o
rt

io
n
 o

f 
O

u
tm

ig
ra

n
ts

, 
N

(x
)

North Dakota

Nevada

 

Figure 10b. Population Distributions
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Figure 11a. Variations in the Post Labor Parameter, alpha2
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Figure 11b. Population Distributions
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Figure 12a. Variation in Late Year Migration Parameter, c
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Figure 12b. Population Distributions
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