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Abstract. Surveys and other similar data collection techniques are widely used in social
sciences. In a survey, questions are not chosen arbitrarily, but to reflect the underlying
latent structure, which cannot be observed directly. Latent structure analysis is a sta-
tistical technique for revealing such latent structures.

We develop a geometric view on latent structure analysis, which allows us to describe
in simple terms relation between different branches of LSA (including latent class models,
latent trait models, and linear latent structure models), clearly formulate conditions
of identifiability of models, and provide guidelines for practical applications of LSA. A
special attention is paid to the role and applicability of “local independence” assumption.
An extensive example, based on National Long Term Care Survey data, is discussed from
this point of view.

1. Overview

Surveys and other similar data collection techniques are widely used in social sciences.
In a survey, questions are not chosen arbitrarily, but to reflect the underlying latent struc-
ture. Latent structure analysis is a statistical technique for revealing such latent structures.
Although LSA is more than half a century old, it is still far from being clearly and unam-
biguously understood; many concepts were realized only behindhand (for example, it took
several decades to recognize connection between LSA and a theory of mixed distributions;
the same can be said about relation between latent class and latent trait models). We
believe that our geometric approach would shed a new light on the methods of LSA and
would help the applied researchers in selecting most appropriate models and interpreting
their outcomes.

In this presentation we understand “latent structure analysis” in the sense of Lazarsfeld
(Laz50b; Laz50a; LH68); that is, the observed values are represented by a number of cat-
egorical random variables, and latent structure under investigation governs distribution of
these variables. Our mathematical treatment of latent structure analysis is based on the
modern approach, which considers latent structure models as mixed distribution models
(Bar02).

The summary of our approach is given by the following statements (required notions and
notation are introduced below):

(1) Independent distributions (i.e., distributions being mixed to obtain the observed distribu-
tion) of observed random variables belong to |L|-dimensional linear space (for the case of
10 binary variables, this is 20-dimensional space).
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Remark: In order to be a probabilistic distribution, a vector from |L|-dimensional space must

satisfy J linear equations and a number of linear inequalities; together, these constraints define a

(|L| − J)-dimensional convex polyhedron in R|L| (for the case of 10 binary variables, the dimen-

sionality of this polyhedron is 10).

Remark: We do not exclude redundant dimensions in order to preserve symmetry. The absence of

symmetry significantly befogs the picture and complicates further considerations (and in our opin-

ion, the previous researchers failed to paint a picture similar to ours just because the dimensionality

was reduced as much as possible and as soon as possible).

(2) All probabilistic distributions of observed random variables belong to |L∗|-dimensional linear
space (for the case of 10 binary variables, this is 1024-dimensional space).
Remark: In order to be a probabilistic distribution, a vector from |L∗|-dimensional space must

satisfy 1 linear equation and a number of linear inequalities; together, these constraints define a

unit simplex in R|L
∗|.

(3) The natural imbedding of the space of independent distributions into the space of all distri-
butions is not linear; its image, called independence surface, is an intersection of quadratic
hypersurfaces.

(4) Latent structure model is a representation of a vector corresponding the observed distribu-
tion as a (generalized) convex linear combination (or mixture) of vectors belonging to the
independence surface.

(5) Identifiability of a latent structure model means that such linear combination is unique.
(6) Latent structure model always exists but never is identifiable (except degenerated cases).
(7) To obtain identifiability, one needs to restrict the allowable family of linear combinations.

Various branches of latent structure analysis differ by restrictions imposed on linear combi-
nations.

(8) Latent class models (LCM) search for finite linear combinations. They are identifiable when
number of independent distributions being mixed (number of latent classes) is sufficiently
smaller than |L∗|.

(9) Latent trait models (LTM; also known as “item response theory,” IRT) restrict distributions
being mixed to a curve from a special class (one-dimensional LTM) or to a surface from a
special class (multi-dimensional LTM). One-dimensional LTM are always identifiable, and
multi-dimensional LTM are identifiable when dimensionality of the surface is sufficiently
smaller than |L∗|.

(10) Linear latent structure (LLS) models restrict distributions being mixed to a linear subspace
of the space of independent distributions. LLS models are identifiable when dimensionality
of this subspace is sufficiently smaller than |L|.

(11) In the most cases, the existence of LCM or LTM implies existence of LLS model.
(12) If LLS model exists, the existence or nonexistence of LCM or LTM can be easily derived

from the analysis of LLS model.

2. Linear spaces of distributions

The input of latent structure analysis consists of a number of categorical measurements
made on individuals in a sample drawn from a population under investigation. The out-
comes of these measurements are represented as realizations of random variables X1, . . . , XJ ;
random variable Xj takes values in a finite set {1, . . . , Lj}.

The set of directly estimable from observations distribution characteristics consists of
elementary probabilities

(1) p` = P (X1 = `1 and . . . and XJ = `J )

Here ` = (`1, . . . , `J) is a response pattern. The joint distribution of X1, . . . , XJ is fully
described by the set of elementary probabilities {p`}`, where ` ranges over the set of all
possible response patterns, which we denote L. As there exist |L∗| = L1×· · ·×LJ different
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response patterns, a joint distribution can be identified with a vector in linear space R|L∗|.
In order to describe a probabilistic distribution, vector (p`)` from R|L∗| should satisfy

(2) p` ≥ 0 for all `;
∑

`

p` = 1

Note that these conditions define a unit simplex in R|L∗|.
Among all joint distributions one can distinguish independent distributions, i.e. distri-

butions, in which random variables X1, . . . , XJ are mutually independent. This means that
for every set of indices j1, . . . , jp and for every response pattern ` the relation

(3) P(Xj1 = `j1 and . . . and Xjp
= `jp

) = P(Xj1 = `j1) · . . . · P(Xjp
= `jp

)

holds. Equation (3) allows us to describe an independent distribution using only |L| =
L1 + · · ·+ LJ parameters. Namely, let βjl = P(Xj = l). Then for every response pattern `,

(4) p` =
J∏

j=1

βj`j

Thus, every independent distribution can be identified with a point β = (βjl)jl ∈ R|L|.
Not every point β ∈ R|L| corresponds to a probability distribution; to describe a distribution,
β must satisfy the conditions:

(5)

{∑Lj

l=1 βjl = 1 for every j

βjl ≥ 0 for every j and l

Conditions (5) define a convex (|L|−J)-dimensional polyhedron in R|L|, which we denote
SL.

Equations (4) define a natural embedding of the space of independent distributions into
the space of all distributions. Under this mapping, the image of SL, called independence
surface, belongs to the unit simplex in R|L∗|. Note that the natural embedding is not a
linear mapping.

To describe the independence surface, we need additional notation. Let L0 be a set of
integer vectors of length J with jth component from {0, 1, . . . , Lj}, j = 1, . . . , J (in other
words, L0 is obtained as extension of L by allowing some components of the vectors to be
0). For ` ∈ L and `′ ∈ L0 we say that ` is a subpattern of `′, or ` narrows `′, denoted ` ∈ `′,
if ` coincides with `′ in all components which are non-zero in `′ (for example, (1, 1) ∈ (1, 0)
and (1, 2) ∈ (1, 0), but (1, 2) 6∈ (2, 0)). We say that vectors `′ and `′′ from L0 are disjoint,
denoted `′ ⊥ `′′, if for every j either `′ = 0 or `′′ = 0 (for example, (1, 0, 0) ⊥ (0, 0, 1) and
(2, 0, 2) ⊥ (0, 1, 0), but (1, 2, 0) 6⊥ (0, 1, 0)).

The intended goal of introducing of L0 is to obtain notations for marginal probabilities;
for example, with this notation p(0,1,0) = P(X2 = 1) and p(2,0,1) = P(X1 = 2 and X3 = 1).
The usual summation conditions for marginals in a contingency table are written in our
notation as p`′ =

∑
`∈`′ p` (for example, in the case of 3 binary variables one obtains

p(2,0,1) = p(2,1,1) + p(2,2,1)).
Now the conditions for a distribution given by vector (p`)` in R|L∗| to be independent

can be written as

(6) p`′+`′′ = p`′ · p`′′ for every `′, `′′ ∈ L0 such that `′ ⊥ `′′

Note that conditions (3) can be derived from conditions (6) and vice versa. Further, the
conditions (6) can be rewritten in coordinates of R|L∗| as

(7)
∑

`∈`′+`′′
p` =

(∑

`∈`′
p`

)
·
(∑

`∈`′′
p`

)
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The equation (7) is a quadratic equation; thus, the independence surface is an intersection
of quadratic hypersurfaces. This is very attractive fact, as it suggests that the further
investigation of properties of independence surface may be performed by means of analytic
geometry.

3. Mixtures of independent distributions

The goal of latent structure analysis is to find a representation of the observed distribution
as a mixture of independent distributions. In our approach, this means to represent the
vector p = (p`)`, which describes the observed distribution, as a linear combination of
vectors belonging to the independence surface:

(8) p =




p(1,...,1)

...
p`

...
p(L1,...,LJ )




=
∑

k

αk ·




q
(k)
(1,...,1)

...
q
(k)
`
...

q
(k)
(L1,...,LJ )




=
∑

k

αk ·




∏
j β

(k)
j1

...∏
j β

(k)
j`j

...∏
j β

(k)
jLj




Here q(k), k = 1, . . . ,K, are vectors belonging to the independence surface; consequently,
there exist vectors β(k) in R|L| such that q

(k)
` =

∏
j β

(k)
j`j

, which explains the last equality in
(8).

The linear combination of vectors q(k) with coefficients αk can be considered as a mixture
with the mixing distribution concentrated in points q(k) (or in points β(k)) with weights αk.
The natural way to generalize the representation (8) is to replace a mixing distribution
concentrated in a finite number of points by an arbitrary mixing distribution. Such general
form of mixing distribution may be given by its probability density function f(β), cumulative
distribution function F (β), or measure µβ defined on space R|L|. With this, the sought
representation can be written as

(9) p` =
∫ ( ∏

j

βj`j

)
f(β) dβ =

∫ ( ∏

j

βj`j

)
F (dβ) =

∫ ( ∏

j

βj`j

)
µβ(dβ)

One has to keep in mind, however, that p.d.f. f(β) can be a generalized function.
The easiest way to explain usefulness of this generalization is an analogy with estima-

tion of distribution law of real-valued random variable from finite number of observations:
although the best that can be constructed based only on a finite number of observations
is an empirical distribution, the nature of the applied domain often suggests that the true
distribution is continuous, which the empirical distributions is an approximation to.

Now for every ` ∈ L consider vector e(`) in R|L|, which has `th component equal to 1 and
all other components equal to 0. On the one hand, all these vectors represent independent
distributions with corresponding vectors β(`) having components β

(`)
jl = 1 if l = `j and

β
(`)
jl = 0 otherwise. On the other hand, the vectors e(`) are vertices of the unit simplex in
R|L∗|, and consequently every vector belonging to the unit simplex (i.e., every distribution)
can be represented as a convex linear combination of vectors e(`)

(10) p =
∑

`∈L
p` · e(`)

Thus, every distribution can be represented as a mixture of independent distributions.
However, the representation (10) is totally useless, as it does not provide new knowledge.
We precede the further discussion of the problem by a simple illustrative example.
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Consider a case of two binary variables. Assume that the observed distribution is de-
scribed by the vector of probabilities

(11) p =




p(1,1)

p(1,2)

p(2,1)

p(2,2)


 =




1/3
1/6
1/6
1/3




It is easy to see that this distribution is not independent, as p(1,1) = 1/3 6= 1/2 · 1/2 =
p(1,0) · p(0,1). At the same time, this distribution can be represented as a linear combination
of two independent distributions in multiple ways; two possible representations are:

(12) p = 1/2




0
1/3
0
2/3


 + 1/2




2/3
0
1/3
0


 = 2/3




1/12
1/4
1/6
1/2


 + 1/3




5/6
0
1/6
0




Further, it can be represented in form (9). One possibility for this is to take the mixing
distribution being uniformly distributed over segment connecting point β(1) = (1, 0, 1, 0)
and β(2) = (0, 1, 0, 1) in the space of independent distributions R|L|. This means that the
independent distributions being mixed can be parameterized by parameter t, uniformly
distributed over interval [0, 1], as

(13) β(t) =




β11(t)
β12(t)
β21(t)
β22(t)


 =




1− t
t

1− t
t




Now probabilities of response patterns of the mixture can be calculated in accordance with
(9) as

(14) p(1,1) =
∫ 1

0

β11(t)β21(t) dt =
∫ 1

0

(1− t)2 dt = 1/3

and similarly for p(1,2), p(2,1), and p(2,2).
Similar examples can be readily constructed for higher dimensions.
The above considerations show that in such general settings (a) latent structure model for

any observed distribution always exists; (b) latent structure model is never identifiable. As
identifiability of the model is necessary for a practical usefulness of any statistical method,
one need to employ additional ideas to make latent structure analysis a useful tool for the
applied researcher.

The central idea is to search for the simplest latent structure model rather than for any
model. The notion of simplicity may be introduced in many different ways, and here is the
point where different branches of latent structure analysis emerge.

In all existing branches of latent structure analysis the “simplicity” is formulated as a
set of restrictions imposed on the allowed linear combinations in (8) and (9)—or, in other
words, by imposing restriction on the subset of the space of independent distributions that
carries the mixing distribution. Below we describe the major branches of latent structure
analysis from this point of view.

A drawback of imposing restrictions is that it is possible that the restricted model does
not exist (or the restricted model does not fit data well).

3.1. Latent Class Models (LCM). In LCM, the class of allowed subsets is restricted
to finite sets. Thus, the sought representation has the form (8). The vectors q(k) (or,
equivalently, vectors β(k)) are called latent classes.
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To identify the model, one has to find K variables αk plus K × |L| variables β
(k)
jl . For

this, one has |L∗| equations (8) plus K×J equations (5) (some of these equations are depen-
dent, however). Note that equations p` =

∑
k αk

∏
j β

(k)
j`j

are nothing else than Lazarsfeld’s
“accounting equations.”

This gives a rough way to formulate conditions for identifiability of LCM: the model is
identifiable, if the number of variables does not exceed the number of independent equations.
In practice, however, the situation is complicated by the fact that equations might be “almost
dependent,” which leads to ill-posed problem (one has to take into account that probabilities
are approximated by frequencies, and thus one has to solve the system approximately).

In practice, the maximum likelihood methods are used to estimate LCM, as they have
huge computational advantages (both in sense of performance and stability) in comparison
with methods that solve the system directly.

3.2. Latent trait models (LTM). In fact, it is the whole spectrum of models. For the
sake of simplicity, we restrict our attention here to the Rash models for binary variables.

LTM searches for representation (9) with mixing distribution carried by a one-dimensional
curve. This curve is parameterized by parameter t (ranging over real line) as:

(15) βj1(t) =
exp(t− bj)

1 + exp(t− bj)
, j = 1, . . . , J

(As we consider here only binary variables, vector β for every j has only components βj1

and βj2, and βj2 = 1− βj1.)
More detailed discussion of the properties of LTM requires detailed analysis of geometry

of the curve (15), which is outside the scope of the present paper.
The estimation of model parameters bj and distribution of t is performed by maximum

likelihood methods (often employing some a priori information regarding distribution of t).

3.3. Linear latent structure (LLS) analysis. LLS analysis searches for representation
(9) with the mixing distribution carried by a low-dimensional linear subspace of the space
of independent distributions. Thus, one has to estimate K basis vectors of the supporting
subspace, λ1, . . . , λK , and the mixing distribution over this subspace.

It happens that basis vectors can be estimated independently from the mixing distribu-
tions—only based on the observed probabilities p`. The estimation of the basis is performed
by methods similar to the methods of principal component analysis.

After the basis of the supporting subspace is estimated, the estimation of the mixing
distribution can be done by solving a number of small systems of linear equations (one
system per response pattern presented in the sample; each system is an overdetermined
system with J equations).

The ability to estimate model using methods of linear algebra is a big advantage of LLS
analysis: first, it allows to avoid the problem of multimodality (which maximum likelihood
methods has to cope with), and second, it significantly increases dimensionality of the
datasets that can be analyzed (for example, the authors successfully applied the prototype
of LLS algorithm to the dataset involving 1,500 binary variables).

3.4. Comparison of LCM and LLS models. Our geometric approach allows us compare
different latent structure models. We demonstrate it by the following properties, which can
be easily derived from the above constructions:
• If LCM with K classes exists, then K-dimensional LLS model exists as well.
• The existence of LCM can be derived from the analysis of the mixing distribution in LLS

model: if the mixed distribution has pronounced modality, then LCM exists.
• It is possible to construct a distribution, which has 2-dimensional LLS model and no

LCM with the number of classes smaller than J .
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3.5. Parametric language. A traditional exposition of latent structure analysis speaks
about “latent variables” or “latent parameters.” These notions are translated in our lan-
guage in the following way.

The subset carrying the mixing distribution always can be parameterized—by a discrete
parameter in the case of LCM, by one-dimensional real parameter in the case of LTM, or
by K-dimensional vector parameter in the case of LLS analysis. This parameter can be
considered as a random variable; the distribution of this random variable is the mixing
distribution. This random variable is exactly what is traditionally called “latent variable”
or “latent parameter.”

4. Applications of latent structure models

One obvious application of a latent structure model is provided by interpretation of
the discovered latent structure in terms of the applied domain. This topic, although very
important, cannot be discussed in general framework.

Another important application is calculation of numerical values depending on higher-
order moments of the observed distribution. We illustrate it by example. Suppose that
in example of section 3 the outcome 1 of the first measurements denotes the event which
causes an insurance company to pay a premium. Let Y be a random variable which equals
1 when X1 = 1 and equals 0 otherwise. To design an optimal insurance policy, one need
to know both expectation E Y (which is equal p(1,0) = 1/2) and variance DY , which cannot
be directly derived from the observed data. Without knowing latent structure, the only
possible way to estimate DY is to take it equal to p(1,0)(1− p(1,0)) = 1/4. But if one knows
that the observed distribution is governed by the latent structure (13), the variance can be
calculated as

(16) DY =
∫ 1

0

(1− t)t dt = 1/6

5. Local independence assumption

The “local independence” assumption is always considered as essential part of the la-
tent structure analysis. Different authors, however, express distinct opinions regarding its
meaning. Her we present our point of view.

One has to distinguish weak and strong local independence assumptions.
The weak local independence assumption is “the observed distribution can be represented

as a mixture of independent distributions.” In fact, it is not assumption—rather, it is
a property of a model being constructed. The question is not “whether the weak local
independence assumption is valid,” but “does LCM, LTM, or LLS model exists?” If one
believes that a model correctly describes the distribution under consideration, he/she has
to believe in all its corollaries (like described in section 4).

The strong local independence assumption is “the latent variable takes a single value on
each individual.” It implies that “conditional on individual” (which is stronger than “condi-
tional on the value of latent parameter!”) “the observed latent variables are independent.”
It is really an assumption, and it requires justification to validate any inference based on it.
Fortunately, the strong local independence assumption is not required to derive properties of
the population. It is crucial, however, for establishing individual properties (like probability
to belong to a particular class in LCM, or individual scores in LLS analysis).

In applications, it is often possible to relax the strong local independence assumption
to “conditional on individual, variance of latent variable is small.” This would guarantee
that individual properties, derived from the model, are held with “high” probability. Of
course, the meaning of “small variance” and “high probability” should be quantified in each
practical case.
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6. Real-world example

We explain the above considerations by example of application of LLS analysis to National
Long Term Care Survey data.
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Figure 1. Mixing distribution of NLTCS data.

Figure 1 gives a pictorial representation of the mixing distribution. The mixing distribu-
tion is carried by a 3-dimensional polyhedron; to achieve a better impression of the volume,
we provide three view from different angles. The left column contains pictures of polyhedron
carrying the mixing distribution, the right column presents the distribution itself.

This picture clearly demonstrates the absence of LCM or LTM that reasonably fits the
data (which coincides with findings of (Ero02)). At the same time, the LLS model fits data
well.

7. Bibliographical notes

Latent structure analysis was introduced by Paul Lazarsfeld in (Laz50b; Laz50a); its
development and current state is reflected in (LH68; Goo78; LR88; Hei96; BK99; MM02).

Mixed distribution models are described in (EH81; TSM85; Lin95).
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Linear latent structure analysis was developed in (KAMT05a; KAMT05b). An algorithm
for estimation LLS models is described in detail in (AKYM05). An important property of
convergence of estimates of mixing distribution was proven in (KYA05).
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