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Introduction 

 

 The emergence of HIV and the reemergence of other STI over the last 30 years 

have forced researchers and scientists to look for new ways of conceptualizing disease 

transmission dynamics as well as intervention strategies.  Early work in this area resulted 

in the development of core group theory.  The fundamental principle of core group theory 

is that a small group of people with large numbers of partners and repeated infections can 

maintain endemic infection within a population even when the overall reproduction rate 

within the population is below 1 (Hethcote and Yorke 1984) (Thomas 1996).  Such 

insights directed both policy makers and health care providers to focus on identifying and 

treating members of core groups, a strategy that can successfully curtail disease spread 

without the cost and coordination challenges of broad population based interventions.   

 HIV and other incurable STI are not effectively conceptualized within the core 

group framework because there is no subgroup wherein re-infection is common. 

Prevention and treatment strategies predicated on the core group framework may 

therefore be ill-suited to meet the challenges posed by incurable STI.  New alternative 

methods have therefore been developed.  Network analysis in particular shows great 

promise for understanding both the dynamics of transmission and the consequences of 

intervention strategies (Morris 2004).  However, some of the early work on sexual 

networks has been somewhat misleading and potentially detrimental to the development 
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of effective health care policy.  Here we re-evaluate some of the early claims about the 

structure of sexual networks.  In particular we focus on the degree distributions which 

have been characterized as scale free.  To determine the best course of action it is 

essential that we develop a more complete understanding of the dynamics of 

transmission.   

 An often used approach to developing our understanding of the affect of network 

structure on transmission or diffusion is to focus on key general characteristics of a 

network and try to interpret the consequences of network structure based on theoretical 

arguments regarding these individual features rather than focus on more complex features 

of empirical networks like nodal attributes, or the processes that generate the network 

structure.  One such focal feature is the degree distribution. In a sexual network the 

degree distribution is the number of sexual partners each member of the network has.  

 This relatively simple attribute of the network has been identified as a potential 

key concept for understanding disease transmission across sexual networks (Liljeros et al. 

2001; Schneeberger et al. 2004).  In particular the degree distribution has been 

characterized as "scale free" (Schneeberger et al. 2004) (Amaral et al. 2000) (Liljeros et 

al. 2001).  Scale free distributions are a set of distributions which follow a power law and 

are characterized by infinite variance.  Power law models have the general 

form ( )P k k α−
∝ .    

 The relevant characteristic of these models for understanding disease transmission 

is the scaling parameter (α) which is the slope of the line described by the model when it 

is represented on a log-log scale.  If this parameter is between 2 and 3 the variance of the 

degree distribution is infinite.  When the degree distribution has infinite variance the level 
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of infectivity requisite for a disease to generate an epidemic approaches 0.  Concordantly, 

the critical vaccination fraction under such circumstances is unity – all members of the 

population must be successfully vaccinated to eradicate the disease.  Under these 

conditions efforts to reduce transmissibility such as condom distribution and use 

promotion, mass media campaigns and antiretroviral therapy will fail to curtail disease 

spread to a sufficient degree to ultimately eradicate the disease.  Only selective 

interventions directed at high degree "hub" nodes will effectively restore the epidemic 

threshold and curtail the diffusion process (Denzo and Barabasi 2002).  Given the public 

health implications of infinite variance in the degree distribution of sex partners, it may 

be premature to classify these distributions as scale free.   

 Attempts to classify sexual network degree distribution have not been definitive 

in determining there form but the empirical evidence shows that degree distributions for 

sexual partnership networks are highly right skewed (Jones 2002).  For partners over a 12 

month period the modal degree is k = 1 for nearly all large representative surveys (e.g 

(Laumann et al. 1994) (Lewin 1996) (Hubert, Bajos and Sandfort 1998) (Aral 1999) 

(Youm 1999) (Davis, Smith and Peter V. Marsden 2003) (Tanfer 1993) (Tanfer 1995)).  

In the 5 sets of survey data used for these analysis (described later) 63.9% to 76.7% of 

respondents report k=1 partners.  The histograms of the degree distributions are shown in 

figure 1a and 1b.  The extreme right skew of sexual network degree distributions has 

been likened to that of a variety of physical systems suggesting the possibility of power-

law scaling (Lloyd and May 2001).  

 The similarities between the degree distributions of physical systems and the 

degree distributions of sexual networks has led several researchers to apply power law 
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models to a multitude of populations including Rakai, Sweden, the United States, 

England, and Zimbabwe (Schneeberger et al. 2004) (Handcock and Jones 2003) (Amaral 

et al. 2000) (Liljeros et al. 2001).  Schneeberger et al reported the fit of power law models 

to the degree distribution of heterosexual males in Britain in 1990 and 2000.  In both 

years the scaling parameter was between 2 and 3 and the reported 95% confidence 

interval was also within those bounds.  Handcock and Jones also reported that the scaling 

parameter of a power-law model fit to the degree distribution of heterosexual males in the 

United States was between 2 and 3.  These finding would suggest that these population 

have a high potential for rapid epidemic spread, but the empirical evidence does not 

indicate that a strong epidemic exists in these populations.   

 In population that do show evidence of a sever epidemic such as the heterosexual 

population of Rakai (Handcock and Jones 2003)and men who have sex with men in 

Britain (Schneeberger et al. 2004)the scaling parameters were shown to be well outside 

the range of 2-3.  These counter intuitive findings indicate that power law models may 

not accurately reflect the social processes generating the observed distribution.  The 

contradictory conclusions of these investigations serve as the motivation for the present 

investigation.   

 It is our contention that the methods previously employed in the evaluation of 

sexual network degree distributions have been inadequate in three ways.  First, the 

amount of error in the tail of the distribution has been underestimated.  Second, social 

process has been bypassed in favor of simple curve fitting despite the existence of myriad 

alternative social process models.  Finally, random mixing has been assumed despite 

overwhelming evidence that there is a high level of heterogeneity in the partner selection 
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process.  As a consequence of these errors and omissions some have drawn the erroneous 

conclusion that power law models adequately fit the degree distributions of empirical 

sexual networks.     

 When using power law models to make inferences about network structure the 

scaling parameter ρ of a power-law model is typically estimated by fitting a regression 

line through the apparently linear region of a plot of the survival function of the degree 

distribution plotted against the distribution on double logarithmic axes (Amaral et al. 

2000; Liljeros et al. 2001) and the standard error of the estimated slope is the estimate of 

uncertainty in the model.  There is an obvious appeal to such models as they are 

mathematically simplistic and well described in the physics literature.  There is however, 

an implicit assumption that uncertainty is not correlated with degree.  The skewed 

distribution and the manor by which respondents report sexual network data suggest that 

this assumption is not met.  Even for very large surveys the number of observations in the 

tail of the distribution is very small.  In the data sets we are analyzing > 3 partners were 

reported by 4.4% to 8.6% of respondents and > 10 partners reported by 0.2% to 1% with 

sample sizes ranging from 3,282 to 44391. The information contained in the tail of a 

degree distribution is therefore minimal and as a consequence the precision of inferences 

on the tail is extremely low.  As the number of partners increases beyond 10 there is also 

a tendency for respondents to report in round numbers (Huttenlocher, Hedges and 

Bradburn 1990) (Morris 1993b) and as a  consequence the precision of the model 

approximation becomes more dependent on less and less accurate data as it fits the higher 

degree values.  This methodology is therefore, inappropriate for the inference problem, 
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yielding biased estimates of the scaling parameter, and greatly underestimates model 

uncertainty (Jones 2002).   

 More recently, attempts have been made to fit power law models to specific 

portions of the degree distribution or portions of particular populations (Schneeberger et 

al. 2004).  This too brings into question the validity of any inferences made with regard to 

the existence of an epidemic threshold or the properties of sexual networks more 

generally.  Fitting models to the tails of the distribution, those components with >10 or 

>15 partners, disregards the majority of the data where the statistical power lies and 

places undue reliance on the least reliable data.  We use three different cutoff points in 

these analyses which preserve progressively less information from the available data to 

show how model fit changes as we ignore more of the left side of the distribution.  The 

cutoffs we employ are 1,2 and 3.  All three cutoffs are at low number of partners 

compared to the highest numbers of reported partners but they are very high in terms of 

the amount of data they exclude.  A cutoffs as low as four partners ignores more than 

95% of the data from most surveys of sexual behavior.    

 The duration over which we measure partnership number must also be considered 

before drawing conclusions about the epidemic potential of a network.  The degree 

distributions of individuals over their lifetimes suggest a network that is far more dense 

than the sexual network that might exist at any given moment. The network of interest is 

the network over which a disease must travel in order to create an epidemic and it is 

likely that the relevant network is better approximated by more restricted time frames, but 

even truncated approximations to a sexual network ignore the dynamic nature of sexual 

networks.  The degree distribution of a sexual network is a consequence of the social 
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processes that drive partner selection.  The behavior of the individual actors that 

generates the distribution is dynamic and to consider such a network from a cross-

sectional perspective is misleading.  At any time point it is probably best thought of as 

representing a dynamic equilibrium of underlying social and epidemiological processes, 

rather than simply a static pattern of sexual behavior (Kendall 1961).  Given the limits of 

data collection, static networks derived from survey data representing relatively short 

time frames may however, function sufficiently as a proxy for network a disease may 

traverse. 

 Because behavior of individuals is the force that generates the degree distribution 

the stochastic processes that generate the observed data should not be ignored in favor of 

mathematical distributions with weak proximate mechanisms.  There are several 

plausible stochastic process models that should be considered. The equilibria of 

stochastic process models of network formation can be fit to empirical data using 

likelihood techniques, allowing both the estimation of parameters and the assessment of 

goodness-of-fit to the data. 

 We use maximum likelihood estimation to estimate the model parameters of 11 

different models and compare their relative fit to the empirical data.  Maximum 

likelihood estimation has been regarded as optimal based on asymptotic arguments 

(Casella and Berger 2002).  

 Like any sample from a population, the samples obtained in the sexual surveys we 

analyze here are imperfect representations of their populations. Errors accrue due to 

sampling frame misspecification, informant misreport and non-response (Rubin 1987) 

(Morris 1993a) (Thompson 1992). Likelihood methods enjoy the tremendous advantage 
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that the sampling design is “ignorable” for many standard (and nonstandard) designs 

under the likelihood framework (Thomas 1996). That is, the likelihood only depends on 

data in the sample, and not on unknown missing data.  

 In this paper we use 5 different surveys of the US population to test the fit of 

power law models to the degree distribution of sexual networks.  By using multiple 

surveys of the same population we can determine if the goodness of fit of the power law 

models relative to alternative models is robust to subtle changes in the survey sample.  

We can also determine if the scaling parameters are robust to these same changes.   

 In addition to testing model fit across surveys we also test the consistency of 

model fits within survey.  One of the surveys we use has three different measures of 

sexual partners in the last year.   

 The inclusion of several alternative models also allows us to gain leverage on the 

question of social process.  If one model consistently fits the empirical distribution better 

than the others, we may glean some information about the process that drives partner 

acquisition.  If, on the other hand, the best fit model is different in every case and appears 

to be almost a random process, the indication would be that the partnership acquisition 

process is far too complex for a relatively simple model to capture and that reported "fits" 

of individual models are most likely idiosyncratic and not particularly informative.    

  

Stochastic Models for Network Formation 

 We test the fit of 11 different models to five sets of data collected in the United 

States.  The models we fit are drawn largely from (Handcock and Jones 2003)but also 

include the log-normal model described by (Perline 2005).  The models evaluated are the 
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Yule, Waring, Discrete Pareto, Poisson, Negative Binomial, Geometric, Discrete Pareto 

Exponential, Geometric Yule, Negative Binomial Yule, Non-Zero Negative Binomial and 

the Poisson Log normal.  Briefly, these models fall into three general classes of models: 

(1) Non-homogenous Poisson, (2) preferential attachment, and (3) “vetting” models.   

 Briefly, Poisson models consider the population of individuals with at least one 

partner in a given time period. The number of additional partners K -1 that the person has 

in the time period follows a Poisson distribution with expected value λ. There are many 

proximate mechanisms for this (for example, the partners are accumulated at a constant 

rate in time).  But, because the assumption that all individuals have identical propensities 

to form partnerships is unrealistic (individuals differ by gender, age, marital status, 

attractiveness, and other fundamental characteristics that greatly influence partnership 

formation) we include heterogeneity in individual propensities. To model within-

population heterogeneity, we can represent the individual expected values λ as 

independent draws from a distribution P(λ). 

  In preferential attachment models, the probability that a contact is made with any 

particular individual is a function of that individual’s current degree. Two models for 

preferential attachment are (1) the Yule distribution (Simon 1955) (Jones 2002) and 

(CDC 2001) the Waring distribution (Irwin 1963).  These are often referred to as "the 

rich get richer" models. 

 In vetting models people form sexual partnerships based on a two-stage process. 

First, they generate an acquaintance list that serves as the eligible population.  People 

then choose their sexual partners from the acquaintance list. This class of model is 

extremely flexible in that practically any probability distribution can be specified for both 
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of these processes. This process focuses attention on the stopping rules that people 

employ when forming sexual partnerships. The Yule-vetting models are generalizations 

of the Yule distribution that recognize that the formation of sexual partnerships is not 

costless.  

 This vetting process may represent social networking, geographic, temporal or 

other processes.  As before, the assumption that all individuals have identical propensities 

to form sex partnerships is unrealistic due to the individual characteristics such as gender, 

age, marital status, attractiveness. We model this within-population heterogeneity, by 

independently drawing the individual expected values from a distribution P(λ).  The 

acquaintance list distribution can be modeled as Yule, Waring, or negative binomial. 

 The vetting process can also be interpreted as a selection process designed to 

satisfy multiple criteria.  Individuals may choose partners from their acquaintances that 

independently satisfy some criterion with a fixed probability. The accumulation process 

continues until they meet a quota of people that satisfy the criterion. An example of this 

would be people looking for a number of long-term partners among many casual partners. 

Many other interpretations are possible and interesting within this context. 

 The discrete Pareto distribution lacks a plausible stochastic mechanism for 

network formation, which limits its appeal as a model of sexual contact networks. While 

this lack of a motivating stochastic mechanism constrains the utility of the discrete Pareto 

distribution as a model for sexual networks, it can nonetheless be used as an 

acquaintance-list generator in a vetting model. 

 For a more in depth description of the models see (Handcock and Jones 2003) and 

(Perline 2005). 
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Data 

In this analysis we use five different probability samples collected in the United 

States during the 1990's including the National Health and Social Life Survey (NHSLS), 

the General Social Survey (GSS), the National Survey of Men (NSM) and the National 

survey of Women (NSW) and the Behavioral Risk Surveillance Survey.  A quick 

overview of the data is provided in table 1. 

 The GSS is conducted by the National Opinion Research Center (NORC) and was 

designed as part of a program of social indicator research to gather repeated measures on 

a broad range of data.  The GSS uses the NORC national probability sample, which 

includes all non-institutionalized English-speaking persons eighteen years of age or older 

living in the United states.  The samples are designed to give each household in the 

United States an equal probability of inclusion. Respondents report estimates of sexual 

partners via SAQ.  The GSS asked questions about the number of sexual partners in the 

last year in 1988-1991, 1993, 1994, 1996, 1998 and 2000.  There are a total of 16,159 

respondents who reported the number of sexual partners in the last year (Davis et al. 

2003).  GSS response codes for the number of sex partners in the last year are categorical 

and topcoded (1, 2, 3, 4, 5-10, 11-21, 21-100, 100+).   

The NHSLS is a survey conducted in 1992 by NORC.  It was designed to be a 

comprehensive survey of the sexual behavior of adults 18-59 in the United States 

(Laumann et al. 1995).  Respondents were selected using a multistage area probability 

sample designed to give each household an equal probability of inclusion.  A cross 

sectional sample of 3,159 respondents was collected as well as an over-sample of 273 

black and Hispanic respondents.  The study used FTFI as well as SAQ to collect data on 
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sexual experiences.  The number of partners in the last year is asked multiple times in the 

survey using both modes of data collection. Laumann et al. have constructed a categorical 

aggregate measure for partners in the last year that is based on both the FTFI and SAQ 

data.  The three different distributions that are derived from the three variables allow us 

to determine if the fit of power law models or alternative social process models are robust 

to small changes in reporting even within the same survey.   

 The NSM was designed to examine sexual behavior and condom use among men.  

The study population consisted of 20-39 year old non-institutionalized men.  The sample 

was based on a multi-stage, stratified, clustered, disproportionate-area probability sample 

of households within the contiguous United States and included an over-sample of 

Blacks.  The data were collected in 1991 using FTFI (Tanfer 1993).  Respondents are 

asked to report the number of vaginal sex partners and anal sex partners separately.  

There is no way to ascertain how many partners are represented in both categories, so we 

define the number of partners as the maximum of the two categories, which may be lower 

than the actual number of unique partners.  A total of 586 (19%) of the men reported anal 

sex.  Of these, 18 report no vaginal sex partners, and 35 report more anal than vaginal sex 

partners.   

 The NSW was also conducted in 1991 and was designed to examine sexual, 

contraceptive, and fertility behaviors, and the factors associated with these behaviors. The 

sample includes 1669 cases from two sub-samples.  The first sub-sample (n=929) 

consisted of follow-up cases from the 1983 National Survey of Unmarried Women, 

which surveyed 1314 never-married women between 20 and 29 years of age.  The second 

sub-sample (n=740) is from a different probability sample of 20 to 27 year old women of 
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unspecified marital status selected in 1991.  Data were collected using FTFI (Tanfer 

1995). The NSW uses a very similar instrument to the NSM, so the same adjustment 

strategy is used.   

The BRFS is a part of the state-based Behavioral Risk Factor Surveillance System 

initiated in 1984 by the Center for Disease Control (CDC) to collect data on risk 

behaviors and preventative health practices (National Center for Chronic Disease 

Prevention and Health Promotion 2003).  The BRFS uses telephone surveys and the 

questions regarding sexual behavior are part of a supplement started in 1996.  States 

make the decision whether to include the supplement in each year.  We use data for the 

five years from 1996 to 2000.  The number of states electing to include the supplement 

during this period varied from a high of 25 in 1997 to a low of 2 in 1996.  The variation 

makes it impossible to aggregate these data into a true national probability sample. We 

did not want to exclude the BRFS entirely however, because of the amount of data it 

provides (n=72,280).  The variable for the number of sex partners in the last year is top 

coded at 76+ which decreases the right skew of the distribution, but there are only three 

respondents reporting the topcoded value. 

 In order to make these data comparable each of the data sets are re-sampled with 

an adjusted weight that combines both the post stratification weight and a normalizing 

factor so that all of the data sets have the same age distribution as the United States in 

2000.  The age range of the different studies vary so our analysis focuses only on a 

selected range (20-39) included in all five of the surveys.  Restricting to just this range 

allows us to compare the observed degree distribution across study.  It is unfortunate that 
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a broader age range was not possible but the 20-39 range should include a relatively high 

level of heterogeneity in sexual behavior.      

Methods 

 When using MLE the natural comparison between two models is a likelihood 

ratio test.  The log likelihood of the two models is set as a ratio and the value is compared 

to a Chi-square distribution with degrees of freedom equal to the difference in the number 

of parameters in the first and second model being compared.  The ratio of the log 

likelihoods must be used rather than a direct comparison of log likelihoods because a 

model with a greater number of parameters will always fit the observed data more closely 

than a parsimonious one.  Likelihood ratio tests can only be used when the smaller model 

is nested within the larger model.  A model is nested in any other model that contains all 

of the same parameters plus some additional complexity.  The different models we 

consider have different numbers of parameters, but they are not nested, so for our 

analysis the likelihood ratio test is an inappropriate method of determining the relative 

goodness of competing models.  There are several alternative methods for comparing the 

fit of non-nested models, we adopt two different approaches: (1) the Akaike Information 

Criterion (AIC) (Akaike 1974) (Burnham and Anderson 2002) and (2) the Bayesian 

Information Criterion (BIC) (Raftery 1995). For a simple random sample of n people 

with data K1, . . . ,Kn, the AIC is defined as AIC = -2L(θ̂ |K1 = k1, . . . ,Kn = kn) + 2d, 

and BIC = -2L(θ̂ |K1 = k1, . . . ,Kn = kn) + log(n)d.  The two approaches are very similar 

but the BIC has the benefit of incorporating model uncertainty and sample size into the 

decision. The AIC has the advantage of efficiency. That is, for large sample size, it is the 

best approximation to the “true” model (Burnham and Anderson 2002). If the complexity 
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of the true model does not increase with the size of the data set, the BIC is usually 

preferred, otherwise AIC is preferred. However, both criteria should be used for guidance 

and not used to unilaterally exclude models solely based on ranking.  Regardless of 

which criterion is used, smaller is better 

 

Results and conclusions 

 Looking first at the degree distribution of the male populations at a cutoff of one, 

we see some consistency in the fits both within and between surveys. Within the NHSLS 

three of the four best fit models are common to all three distributions.  The order of fit 

based on the BIC for the four best fit models is shown in table 2.  They are the Discrete 

Pareto, Waring and Negative Binomial Yule. The rank of fit based on the AIC and BIC is 

not consistent across all three distributions, but rather it is dependent on whether or not 

the data is continuous or categorical.  The Discrete Pareto is the best fit model to the data 

from males reporting partners as a continuous variable.  This is the only time the Discrete 

Pareto is the best fit model at a cutoff of one.  For both the categorical responses the four 

best fit models are the same with the Negative Binomial fitting the best followed by the 

Negative Binomial Yule, Waring and Discrete Pareto.  In both cases the BIC associated 

with the Negative Binomial fit to the distribution is more than 65 points lower than the 

next best model.  The AIC, BIC and log-likelihood associated with the four best fit 

models to each distribution at the three different cutoffs are shown in table 3a-f.   

 Comparing the distributions derived from the two categorical variables from the 

NHSLS to the distribution from the GSS, we find that the order of the four best fit models 

is the same, and again the Negative Binomial is a much better model than the next best 
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alternative with a BIC more than 270 lower than the next best alternative. The GSS data 

is also categorical and it was collected using the same sampling frame as the NHSLS.   

 When the two other data sets are considered, both of which used continuous 

responses, we find the same three best fit models, but the top two are in reverse order. For 

both the BRFS and NSM the Negative binomial Yule is the best fitting model followed 

by the Negative Binomial.  

 Once we increase the cutoff point to 2 partners the consistency with witch the best 

fitting models fit across the range of the distributions ebbs. In three cases the Negative 

Binomial model remains the best fitting model.  As is the case when the cutoff is one, the 

distributions generated from the two categorical variables from the NHSLS and the 

distribution from the GSS are best fit by the Negative Binomial.  But despite the 

similarity in the best fit model for these three distributions, the remaining models in the 

top four are neither in the same order nor even the same models.  Among the models that 

qualified as the four best fitting to these three distributions, three models, the Discrete 

Pareto, Discrete Pareto Exponential and Yule each appear once while the Waring model 

is twice the fourth and once the third best fit model.  The distribution from the continuous 

response question on the NHSLS is best fit by the Yule, but the difference between the 

associated BIC and the BIC of the next best fit model is < 2.  For the two remaining data 

sets, the NSM and BRFS, the four best fit models are all the same with the Poisson Log-

Normal being the best fitting model followed by the Waring, Negative Binomial Yule 

and Discrete Pareto Exponential.  The Poisson Log-Normal models has BICs 64.58 and 

18 less than the next best alternative fit to the distributions from the BRFS and NSM 

respectively.   
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 Finally, when we focus our analyses to a more extreme portion of the right tail by 

increasing the cutoff to three, the results become even more variegated. The Negative 

Binomial remains the best fitting model to the GSS data and one of the NHSLS 

categorical variables, but it no longer is the best fitting model to the distribution from the 

second categorical variable from the NHSLS.  That distribution is best fit by the 

Geometric model.  The Poisson Log-Normal continues to be the best fit to both the BRFS 

and NSM.  The Discrete Pareto best fits the distribution of the NHSLS continuous 

response variable as it does when the cutoff is 1.  It was the second best fit at cutoff 2.   

 Comparing the model fits to the observed data we find a high level of consistency 

across cutoffs.  For three of the six distributions the best fit model at cutoff 1 is also the 

best fit model at cutoff two.  Similarly the best fit model at cutoff two is often the same as 

the best fit model at cutoff three, four out of the six distributions.  In only one case is the 

best fit model at cutoff one and three the same when a different model fit the distribution 

best at cutoff two.  There are two distributions for which the Negative Binomial was the 

best fit model at all three cutoffs.  These are the distributions for the GSS and the NHSLS 

constructed categorical variable.   Certain data sets also seemed to be more similar than 

others.  The distributions from the BRFS and NSM are fit by the same models, often in 

the same order.  Likewise the distribution from the GSS and the categorical variables on 

the NHSLS are very similar.  This is particularly true of the constructed variable.  There 

is not however a clearly best fitting model across all four data sets within or across the 

three different cutoff points.  The Negative Binomial is the best fitting model more often 

than any other model we tested.  It is the best fit in 8 out of 18 analyses.  The power law 

models are rarely the best fit to the data.  The Yule model is the best fit model only once 



 Draft: PAA 2006 Annual Meeting 

and the Waring is never the best fit model.  This indicates that power law models do not 

generally fit the sexual network degree distributions among males in the United States.          

 For the females there is almost no consistency in the goodness of fit of the 11 

models across or within the different surveys.  At cutoff one the Waring is the best fit 

model to three of the distribution while the Negative Binomial is the best fitting model to 

two of the distributions and the Negative Binomial Yule is the best fit to just one.  

Interestingly, within the NHSLS each of the three distributions is fit best by a different 

model. There is even less consistency as the cutoff is moved to the right.  At cutoff two 

there are three different models that are the best fit models, each one fitting two of the six 

distributions, and at cutoff three there are four different models. 

 In general the set of models that we find better fit the female distributions are not 

the same as those that better fit the male distributions.  The degree distributions for the 

females are much more likely to be well fit by a power law model.  The Yule is the best 

fit model in three of 18 analyses and the Waring is the best fit in three of 18.  The three 

instances in which the Waring is the best fit the cutoff is one, while the instances when 

the Yule is the best fit occur when the cutoff is two or three.  The data sets fit by the 

power law models are not the same across cutoffs with the exception of the GSS which is 

best fit by the Waring at cutoff one and the Yule and cutoff two and cutoff three. 

 In instanced when the best fit model is a power law model for either the males or 

the females the scaling parameter generally does not fall between two and three, the 

interval within which the variance is infinite.  The scaling parameter for the Yule model 

fit to the NHSLS continuous variable data from the males is 2.915 with a standard error 

of .139.  The other case were the scaling parameter is close to the 2-3 interval is the 
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Waring model fit to the NHSLS constructed categorical variable.  In that case the scaling 

parameter is 3.003 with a standard error of .233.  In both of these cases the fit of a 

regression line to the degree distribution on a log-log scale generates a slope of less than 

1.5.  In all the other cases the scaling parameter are well outside the 2-3 range. 

 These results suggest that when the amount of error in the tail of the degree 

distribution is taken into account, the power law models do not fit the empirical data well.    

Further, there is little evidence that the sexual network degree distribution is scale free.  

Almost all of the observed scaling parameters are well out side the scale free range.     

 The social process models generally fit the empirical data better, in particular the 

Negative Binomial.  It is not at all surprising that the Negative Binomial model is so 

often the best fitting because the process that generates the distribution is so intuitive.  

The Negative Binomial is simply the probability of some number of failures before 

success is attained; so we can imagine people selecting partners until they find the right 

one and enter a long term monogamous relationship.   

 As a caveat, we do not believe that any of the 11 models tested here are 

particularly good fits to the data or should be interpreted as the sole underlying 

mechanism that generates sexual network degree distributions.  We simply use them as a 

tool to demonstrate that there are a host of possible models that fit the empirical data as 

well or better than the much talked about power law models.  Partnership formation is a 

heterogeneous process that should be modeled in such a way as to include at least some 

of the complexities of the social world. Further research is required to identify sources of 

heterogeneity in the acquisition and selection of sexual partners. 
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 Given the results of our analyses we conclude that power law models do not 

describe the degree distribution of sexual networks, these networks are not scale free and 

there is an epidemic threshold.  The public health implications of these results are clear, 

broad population based intervention strategies like education programs, condom 

education and distribution and antiretroviral therapies can be effective in reducing the 

spread of HIV/AIDS and other incurable STI and bring the reproductive rate below Ro.   
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TABLE 1.  An Overview of the Five Population Based Surveys Used in this Study 

 

Survey Years Age Sex Interview 

method 

 

Question Data 

adjustments 

BRFS 1996- 

2000 

18+ M/F Telephone During the past 

twelve months, 

with how many 

people have you 

had sexual 

intercourse? 

No adjustments.  

Responses topcoded at 

76+.  3 respondents 

reported 76+ partners. 

GSS 1988-

91, 93, 

94, 96, 

98, 

2000 

18+ M/F Self-

administered 

Questionnaire 

How many sex 

partners have 

you had in the 

last 12 months? 

Responses were 

categorical for values 

greater then 4 so all 

responses greater then 4 

were coded as 5.  These 

data were only used in 

the truncated analysis. 
NHSLS 1992 18-

59 

M/F Face to Face 

Interview 

 Thinking back 

over the past 12 

months, how 

many people, 

including men 

and women, 

have you had 

sexual activity 

with, even if 

only one time? 

An additional question 

was asked on the SAQ 

portion of the 

questionnaire which is 

also used as is a 

variable constructed by 

the original researchers. 

NSM 1991 19-

41 

M Face to Face 

Interview 

Since January 

1990, how many 

different women 

have you had 

vaginal 

intercourse 

with?  Since 

January 1990, 

how many 

different 

partners have 

you had anal sex 

with? 

Constructed from the 

greater of vaginal sex 

partners in 1990 and 

anal sex partners in 

1990 

NSW 1991 19-

38 

F Face to Face 

Interview 

 With how many 

different men 

did you have 

vaginal 

intercourse since 

January 1990?  

With how many 

different men 

did you have 

vaginal 

intercourse since 

January 1990? 

Constructed as the 

greater of vaginal sex 

partners in 1990 or anal 

sex partners in 1990 
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Figure 1a. Histograms of the degree distributions of sexual partners in the last year 

from the three NHSLS variable. (for categorical variables the midpoint is ploted) 
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Figure 1b Histograms of the degree distributions of sexual partners in the last year 

from the NSM, NSW, GSS and BRFS. (for categorical variables the midpoint is 

ploted) 
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Table 2.  The four best fitting models to each of the six distributions in order of rank 

by BIC. 

 

Best fit models when the data are cutoff at 1 

 Rank of 
fit 

NHSLS 
P12 

NHSLSNPS NHSLSPARTN GSS BRFS NSM_NSW

1 NB DP NB NB NBY NBY 

2 NBY waring NBY NBY NB NB 

3 waring DPE waring waring waring waring 

Males 

4 DP NBY DP DP DP DPE 

1 NBY NB waring waring waring NB 

2 waring NBY DP NBY NBY DPE 

3 DP waring NBY NB DP NBY 

Females 

4 NB DP DPE DP DPE waring 

 

Best fit models when the data are cutoff at 2 

 Rank of 
Fit 

NHSLS 
P12 

NHSLSNPS NHSLSPARTN GSS BRFS NSM_NSW

1 NB yule NB NB PLN PLN 

2 PLN DP Geo Geo waring waring 

3 waring waring yule DPE NBY NBY 

Males 

4 NBY Gyule waring waring DPE DPE 

1 yule Geo DP yule DP Geo 

2 waring NB waring PLN DPE PLN 

3 DP DPE yule waring waring waring 

Females 

4 DPE waring DPE Gyule NBY DPE 

 

 

Best fit models when the data are cutoff at 3 

 Rank of 
Fit 

NHSLS 
P12 

NHSLSNPS NHSLSPARTN GSS BRFS NSM_NSW

1 Geo DP NB NB PLN PLN 

2 NB yule Geo Geo yule yule 

3 PLN waring DP DP NBY DPE 

Males 

4 DPE DPE yule waring waring NBY 

1 DP Geo DP yule DP NB 

2 yule DPE waring PLN DPE DP 

3 waring NB yule DP waring yule 

Females 

4 DPE waring NB waring NBY NBY 
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Table 3  The log-likelihood, AIC and BIC of the four best fitting models to each of 

the six distributions.  

 

a) Model Fit to the Degree Distribution of the US Population Age 20-39 (Data: 

NHSLS, 1 open ended question) 

 MALES FEMALES 

Cutoff Model log-lik AICC BIC Model log-lik AICC BIC 

DP -1715.987 3435.983 3446.468 NB -1545.366 3096.746 3113.128 

waring -1715.549 3437.116 3452.838 NBY -1550.975 3109.973 3131.811 

DPE -1715.92 3437.856 3453.578 waring -1554.284 3114.582 3130.964 

1 

NBY -1715.163 3438.355 3459.312 DP -1559.419 3122.844 3133.767 

yule -1715.018 3436.054 3451.776 Geo -1543.688 3093.391 3109.772 

DP -1715.877 3437.771 3453.493 NB -1543.539 3095.1 3116.937 

waring -1715.005 3438.039 3458.996 DPE -1543.602 3095.227 3117.064 

2 

Gyule -1715.019 3438.068 3459.024 waring -1543.707 3095.436 3117.274 

DP -1714.561 3437.152 3458.108 Geo -1543.481 3094.985 3116.822 

yule -1714.969 3437.967 3458.924 DPE -1543.421 3096.877 3124.168 

waring -1714.546 3439.136 3465.325 NB -1543.48 3096.995 3124.286 

3 

DPE -1714.559 3439.161 3465.35 waring -1543.598 3097.231 3124.522 

 

 

 
 

b) Model Fit to the Degree Distribution of the US Population Age 20-39 (Data: 

NHSLS, 1 Categorical question) 

 Males Females 

Cutoff Model log-lik AICC BIC Model log-lik AICC BIC 

NB -1601.786 3209.589 3225.376 waring -1611.399 3228.812 3245.356 

NBY -1633.177 3274.383 3295.428 DP -1612.932 3229.87 3240.902 

waring -1634.494 3275.004 3290.792 NBY -1613.074 3234.17 3256.225 

1 

DP -1635.814 3275.636 3286.164 DPE -1622.227 3250.466 3267.01 

NB -1607.555 3223.138 3244.183 DP -1611.197 3228.408 3244.952 

Geo -1609.555 3225.126 3240.914 waring -1611.274 3230.57 3252.625 

yule -1632.959 3271.936 3287.724 yule -1613.175 3232.363 3248.908 

2 

waring -1632.209 3272.446 3293.491 DPE -1616.177 3240.376 3262.431 

NB -1609.536 3229.114 3255.413 DP -1611.081 3230.184 3252.239 

Geo -1610.962 3229.953 3250.998 waring -1610.632 3231.296 3258.859 

DP -1631.144 3270.315 3291.36 yule -1612.76 3233.541 3255.596 

3 

yule -1631.343 3270.713 3291.758 NB -1612.981 3235.994 3263.558 
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c) Model Fit to the Degree Distribution of the US Population Age 20-39 (Data: 

NHSLS, Constructed by Laumann et al) 

 MALES Females 

Cutoff  log-lik AICC BIC  log-lik AICC BIC 

NB -1653.337 3312.691 3328.418 NBY -1619.94 3247.904 3269.746 

NBY -1681.071 3370.17 3391.133 waring -1621.08 3248.173 3264.558 

waring -1694.547 3395.111 3410.837 DP -1624.739 3253.485 3264.411 

1 

DP -1696.551 3397.111 3407.598 NB -1639.533 3285.079 3301.464 

NB -1656.211 3320.451 3341.414 yule -1619.419 3244.851 3261.236 

PLN -1679.715 3367.459 3388.421 waring -1619.351 3246.726 3268.568 

waring -1679.828 3367.685 3388.648 DP -1620.724 3247.461 3263.846 

2 

NBY -1680.455 3370.954 3397.15 DPE -1626.015 3260.053 3281.895 

Geo -1658.05 3324.129 3345.092 DP -1618.399 3244.82 3266.662 

NB -1658.05 3326.143 3352.339 yule -1618.901 3245.825 3267.667 

PLN -1676.911 3363.864 3390.06 waring -1618.462 3246.958 3274.255 

3 

DPE -1679.492 3369.026 3395.222 DPE -1622.411 3254.856 3282.153 

 

 

d) Model Fit to the Degree Distribution of the US Population Age 20-39 (Data: GSS) 

Cutoff MALES FEMALES 

Model log-lik AICC BIC Model log-lik AICC BIC 

NB -3700.485 7406.978 7425.088 waring -3363.522 6733.051 6751.822 

NBY -3834.577 7677.168 7701.311 NBY -3362.892 6733.794 6758.82 

waring -3838.177 7682.363 7700.472 NB -3368.355 6742.717 6761.488 

1 

DP -3841.573 7687.15 7699.225 DP -3369.718 6743.44 6755.955 

NB -3743.639 7495.29 7519.434 yule -3362.946 6731.897 6750.669 

Geo -3753.134 7512.275 7530.385 PLN -3362.147 6732.304 6757.331 

DPE -3822.577 7653.168 7677.312 waring -3362.896 6733.802 6758.829 

2 

waring -3825.482 7658.977 7683.121 Gyule -3362.946 6733.903 6758.929 

NB -3736.468 7482.956 7513.133 yule -3362.896 6733.803 6758.83 

Geo -3765.825 7539.664 7563.807 PLN -3361.943 6733.901 6765.181 

DP -3808.55 7625.112 7649.256 DP -3363.488 6734.986 6760.013 

3 

waring -3808.211 7626.441 7656.618 waring -3362.894 6735.803 6767.084 
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e) Model Fit to the Degree Distribution of the US Population Age 20-39 (Data: 

NSM/NSW) 

CUTOFF MALES FEMALES 

Models log-lik AICC BIC Models log-lik AICC BIC 

NBY -4496.015 9000.041 9024.46 NB -1930.883 3867.78 3884.025 

NB -4510.353 9026.714 9045.03 DPE -1931.376 3868.767 3885.013 

waring -4513.352 9032.712 9051.028 NBY -1931.387 3870.798 3892.454 

1 

DPE -4516.545 9039.097 9057.413 waring -1932.637 3871.287 3887.533 

PLN -4473.554 8955.12 8979.539 Geo -1931.005 3868.025 3884.271 

waring -4482.717 8973.447 8997.866 PLN -1930.17 3868.364 3890.019 

NBY -4491.088 8992.195 9022.715 waring -1930.374 3868.772 3890.428 

2 

DPE -4492.825 8993.662 9018.081 DPE -1930.637 3869.298 3890.954 

PLN -4473.349 8956.716 8987.236 NB -1925.295 3860.626 3887.69 

yule -4475.92 8959.853 8984.272 DP -1927.516 3863.056 3884.712 

DPE -4475.275 8960.569 8991.089 yule -1928.033 3864.09 3885.746 

3 

NBY -4474.88 8961.784 8998.405 NBY -1926.209 3864.468 3896.937 

 

 

f) Model Fit to the Degree Distribution of the US Population Age 20-39 (Data: 

BRFS) 

CUTOFF MALES FEMALES 

Model log-lik AICC BIC Model log-lik AICC BIC 

NBY -20425.91 40859.81 40891.23 waring -17764.76 35535.51 35559.93 

NB -20461.64 40929.28 40952.84 NBY -17766.75 35541.5 35574.06 

waring -20473.56 40953.11 40976.67 DP -17774.93 35553.86 35570.14 

1 

DP -20528.99 41061.99 41077.69 DPE -17774.93 35555.86 35580.28 

PLN -20366.77 40741.54 40772.96 DP -17764.93 35535.87 35560.29 

waring -20399.06 40806.12 40837.53 DPE -17764.55 35537.1 35569.66 

NBY -20411.92 40833.83 40873.1 waring -17764.69 35537.38 35569.94 

2 

DPE -20418.74 40845.47 40876.89 NBY -17766.36 35542.73 35583.43 

PLN -20366.76 40743.52 40782.79 DP -17763.34 35534.69 35567.25 

yule -20391.66 40791.32 40822.73 DPE -17763.34 35536.69 35577.39 

NBY -20390.5 40793.01 40840.13 waring -17763.36 35536.72 35577.42 

3 

waring -20391.59 40793.17 40832.44 NBY -17763.39 35538.79 35587.63 
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