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Spatial Errors in Small-Area Demographic Analysis: Estimating Population for an Oregon 

School District 

Irina V. Sharkova, Kenneth Radin 
 
 

Using a recent study to develop enrollment forecasts for the Medford School District (Oregon) as 

an example, this paper discusses common yet frequently overlooked sources of error in small 

area demographic analysis: positional errors.  It identifies their sources and types and focuses on 

boundary mismatch errors arising from different spatial representations of the same study area.  

These errors are especially challenging when conflicting data are provided by trusted sources, 

such as GIS departments with the school district, city, or county. Using spatially referenced tax 

assessors’ inventories, fine-resolution GIS imagery, and expert judgment, we corrected 

positional errors in the data and created "true" boundaries for the study area. Next, we developed 

population estimates for the school district and its attendance areas from "true" and conflicting 

boundary configurations. The paper compares gains in spatial accuracy with improvements in 

estimates' accuracy and discusses the results in light of efforts required to achieve them. 
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1. Introduction 

Both academic and applied demographers have long been concerned with data quality. A solid 

body of research has produced standard, broadly accepted measures quantifying error in survey 

data such as US Census or Current Population Survey and their derivatives, as well as in 

estimates and forecasts of population, housing, and other characteristics. Yet most classical 

demographic studies on error have investigated large population groups representing the nation, 

states, or metropolitan areas, rarely examining areas smaller than counties (Smith 1987, Tayman 

et al. 1998, Smith and Cody 2004). Given well established locations of these big geographic 

entities, studying errors associated with their location would hardly seem important. 

 

Meanwhile, on-going developments in geography and related disciplines have been generating 

new means to obtain data about smaller and smaller areas and their populations, and new 

methods of analyzing such data. This has been fueling a substantial interest in local (small-area) 

analysis of urban neighborhoods, school attendance areas, market areas, walking-distance 

accessibility zones, and so on. While attribute error measurements developed to-date continue to 

be useful and necessary, they are no longer sufficient, because they do not address a fundamental 

property of small-area data: location and errors associated with measuring the latter.  

 

Geographic Information Science (GISc), the vehicle behind small-area data development and 

analysis of the last 15-20 years, has been studying effects of positional uncertainty and error on 

measurement and analysis of spatial phenomena. However, its findings have been slow to 

translate into demographic analysis, whether academic or applied.  A welcome exception has 

been a recent increase in research to determine best ways of acquiring population and housing 

data for small-area demographic analysis when the study area's boundary does not match 

boundaries of census statistical areas for which the data was originally collected. Several areal 

interpolation methods have been proposed and evaluated. Yet these studies typically assume that 

boundaries of both the study area and census statistical areas are themselves correct, or 

positionally accurate, and spatial errors, if exist, are negligible. As experience shows, this 

assumption is often wrong. 
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In this paper we intend to partially fill this gap by focusing on spatial errors common in small-

area demographic analysis. Using a project to develop population and enrollment forecasts for 

Medford (Oregon) School District as a case study, we quantify the amount of spatial error 

utilizing existing, but little-known measures.  We do so at two geographic levels: regional (the 

entire district) and local (its attendance areas), and demonstrate that the amount of error depends 

on relative size of areas used in data interpolation.  At the regional level, we investigate the 

relationship between positional errors resulting from boundary mismatch and respective 

demographic attribute errors. We explore this relationship for different data sources and methods 

of data interpolation. At the local level, we quantify spatial variations of error produced by 

boundary overlay of attendance areas and census statistical areas.  In instances where exact 

amounts of attribute error cannot be established, we propose to use measures of uncertainty of 

demographic attributes. We also explore several correlates of spatial error including street 

network density and measures of boundary shape. The analysis demonstrates considerable 

variations in spatial error at the local level refuting a common misconception that spatial errors 

tend to balance themselves out. The study provides evidence that applied demographers should 

pay attention to positional accuracy when conducting small-area analyses.  

 

The paper begins with a discussion of spatial error types, sources, and measurement issues, 

followed by the study area overview and study background. Next, District-level analysis of 

boundary mismatch and resulting errors is presented. An analysis of spatial errors at the local 

(attendance area) level follows. The paper concludes with a discussion section and 

recommendations for future studies. 
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2. Types, sources, and measures of spatial error 

In GISc, "spatial error" is a broad term describing errors in observations, measurements, and 

analysis associated with location (Chrisman 1987, Longley et al 2005). It includes positional 

errors resulting from incorrect measurement of coordinates (as happens when student addresses 

get geocoded to a wrong school district), and attribute errors: misclassification or incorrect 

identification of characteristics of geographic (spatial) objects and phenomena. An example of 

the latter is an incorrect total of student residencies in a school attendance area due to errors in 

geocoding. Temporal accuracy, internal logical consistency, and completeness are other 

important characteristics of spatial data quality.  Spatial error results from spatial uncertainty: 

lack of perfect knowledge about a geographic location and its characteristics.  

 

Spatial errors can arise from many sources, including original measurements, data processing, 

and methods of analysis. In small-area demographic analysis, most common sources are 

utilization of poorly documented, "legacy" spatial data which may be inappropriate for the task at 

hand, uncorrected mismatch of coordinate systems and projections of spatial data sets, mismatch 

of scales at which data sets were first developed1, and inattention to topological (internal logical) 

errors in vector spatial data, all of which can produce falsely non-matching boundaries.  

Contributing factors can be lack of coordination between agencies involved in data production 

and distribution, and lack of agreed-upon knowledge of the exact spatial extent of a given study 

area.  

 

A particular strength of spatial data is its capacity for spatial overlay, or integration of 

geographic data sets based on their mutual location. Spatial overlay allows transfer of data from 

one zonal system (for example, Census statistical areas, municipal planning areas, point locations 

of new housing constriction) to another (for example, neighborhood boundaries, 10-minute 

walking accessibility zones of grocery stores). Several methods of spatial data transfer (areal 

interpolation) between source and target units (zones) have been developed and tested 

(Goodchild and Lam 1980, Goodchild et al 1993).  They include simple areal interpolation, 

point-in-polygon aggregation, kernel method, and areal interpolation using supplementary data 

                                                 
1 For example, U.S. Census TIGER data has been developed at a scale 1:100,000, while many common municipal 
applications rely on digital and paper maps with a scale 1:24,000.  
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(intelligent interpolation) (Goodchild et al 1993, Sadahiro 1999, Eicher and Brewer 2001). 

  

The main difference between these methods is an assumption about the type of spatial 

distribution of the attribute (characteristic) of interest in the source zones. Thus, simple areal 

interpolation assumes that the attribute of interest, such as housing units, is evenly distributed in 

each source zone. The attribute of each source zone is then summed up to the target zone in 

proportion to the area of the source zone in a given target zone. An obvious shortcoming of this 

method is the fact that population and housing characteristics are almost never evenly 

distributed: group quarters, multi-family housing, and mobile homes, for instance, have a highly 

uneven spatial pattern, concentrating in some parts of a study area and absent in many others. In 

such cases, significant spatial error can result from interpolation (Sadahiro 1999). 

 

Point-in-polygon method assumes that all spatial objects, such as people, are located exactly on 

the representative point of each source zone (called "centroid" in vector spatial data models); the 

interpolation then involves summing up all the counts allocated to representative points that are 

included in the target zone (Sadahiro 1999).  For example, (Reibel and Bufalino 2005) calculated 

1990 population of 2000 Census tracts by adding population of all 1990 Census blocks whose 

centroids were located inside a given 2000 Census tract and assigning it to that tract. While this 

is the fastest of all interpolation procedures, its assumptions regarding distribution of population 

and housing characteristics are even less realistic than in the simple areal interpolation. 

Additionally, a representative point of each source zone (its "centroid") can be located anywhere 

in the zone, and supplementary steps have to be taken to assure that it is assigned to the 

geographic center of the zone. Given a somewhat random location of a representative point in its 

zone, a source zone can be easily excluded from an overlay even though a good portion of it 

could be inside a target zone (Schlossberg 2003). 

 

Kernel method is somewhat in-between the above two methods. It assumes that spatial objects 

are spread across the source zone, as in simple areal interpolation, but most of them are clustered 

around the representative point of each source zone, as in point-in-polygon method. The method 

requires a mathematical function to describe the distribution (Sadahiro 1999) and has been 

rarely, if ever, used in small-area demographic analysis. The method's reliability depends a lot on 
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the type of the function chosen to represent the distribution of population and housing 

characteristics. 

 

Finally, intelligent interpolation uses supplementary data such as satellite images or land use data 

to determine the distribution of a characteristic (spatial objects) in each source zone (Goodchild 

et al 1993, Sadahiro 1999). As a minimum, the goal is to exclude areas where no population and 

housing characteristics can be found (parks, industrial and most commercial land uses). Several 

other types of data can be used as supplementary (ancillary) data: a street network layer (Xie 

1995, Reibel and Bufalino 2005), tax assessor's data, residential zoning data, and so on. Research 

has shown that, providing the ancillary data represents a distribution of population and housing 

characteristics fairly well, intelligent interpolation results in lowest spatial errors of all the 

methods discussed so far.  

 

Overall, any areal interpolation method produces less attribute error when source zones are 

relatively small compared with the target zones (Sadahiro 2000, Gregory 2002). Additionally, 

the amount of error appears to vary depending on the shape of the source and target zones, type 

of the variable being interpolated, and characteristics of supplementary data (Flowerdew and 

Green 1994, Sadahiro 1999 & 2000, Gregory 2006).   

 

The above studies have considered cases of "legitimate mismatch" between source and target 

zones: a true overlap of the boundaries.  Yet in practice, a "legitimate mismatch" is often, if not 

always, accompanied by a misalignment of the boundaries (a true positional error). Misalignment 

of source and target zones' boundaries used in spatial overlay result in slivers, small, elongated 

polygons between misaligned boundaries. It's been often advised to merge such polygons smaller 

than a certain threshold with neighboring zones, although some researchers have found that such 

procedures may not be appropriate (Edwards and Lowell 1996, cited in Gaeuman et al. 2005). In 

a study area with large variations in shapes and sizes of source and target zones (e.g., a school 

district straddling both densely populated, small, regular-shaped urban census blocks and 

sparsely populated, large,  irregular-shaped rural census blocks) it is difficult to establish a 

meaningful threshold to separate slivers from legitimate small source polygons. Additionally, 

when small spatial objects such as tax lots are used as supplementary data during intelligent 
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interpolation, they may be incorrectly identified as slivers and eliminated.  

A recent study by Gaeuman, Symanzik, and Schmidt (2005) develops a model that could be used 

to differentiate between true slivers and legitimate small polygons. While the authors' goal is to 

determine how to reliably identify areas of actual landscape change detected by a spatial overlay 

versus areas of false change produced by incorrect boundary positions, their model appears more 

broadly applicable. The authors examine boundary-scale errors: small errors resulting from 

overlay of slightly mismatching large polygons. They measure a length of a given boundary 

segment and an area of mismatch, and develop a formula to calculate probable error. They 

conclude that "estimated magnitude of the probable error caused by incorrect boundary positions 

must be less than 0.8 times the area of change measured on the overlay for the overlay to be 

useful".   In other words, an area resulting from an overlay of a source zone and a target zone 

must be 0.8+ times larger than the estimated magnitude of the probable error for the area to be 

considered a legitimate small polygon rather than a sliver.  

 

However, the above model is computationally intensive and may be impractical when several 

hundred of source zones such as Census blocks are involved.  Several other measures developed 

in the GISc literature are used in this paper to evaluate positional error. At the District level, 

where we have a likely benchmark, or true, boundary, we calculate percent difference in area 

size of suspect boundary configurations vis-à-vis the benchmark, and Average Distance Error2 

between vertices of a given boundary and the benchmark. We also calculate attribute errors 

associated with positional errors: percent difference in population and housing characteristics in 

comparison with benchmark population and housing data. At the local level, where benchmark 

boundaries or socio-demographic data were not available, we calculate measures of spatial error 

that take into account both positional error and effects of legitimate overlap of boundaries of 

source and target zones. We also propose and calculate measures of attribute uncertainty 

resulting from positional error and legitimate overlap.  

                                                 
2 In cases where only two boundaries are compared at a given time, only one distance measurement for each 
boundary vertex and its closest benchmark boundary  location can exist. Therefore, Distance Root Means Square 
(dRMS), a measure commonly used to gauge positional errors (Siouris 1993, cited in Gaeuman et al. 2005) , is 
computationally identical to Average Distance Error.    



 9

3. Study area overview & background 

Medford School District is located in Jackson County, Southern Oregon, and serves 

approximately 12,800 students in grades K-12. The area encompasses cities of Medford 

(population 70, 860) and Jacksonville (population 2,500) and a sizable, sparsely populated 

unincorporated area (approximately 3,500 persons). The District saw a strong growth in its 

housing, population, and school enrollment through the 1990s, however, in the recent years its 

enrollment growth has stagnated as the share of retirees and higher-income in-movers, - two 

populations with few or no school age children, has increased. The District asked the Population 

Research Center (PRC) to prepare an enrollment forecast for the 2005-2015 period to assist in 

long-term facilities planning. The forecasts were completed by grade for the District as a whole, 

as well as for its elementary, middle, and high schools.     

 

The study utilized several methods; they included Cohort-Component model for District-wide 

forecasts, Housing Units method for elementary school attendance area forecasts, and a 

combination of Reside-Attend Ratios and Grade-Progression Ratios to establish a 

correspondence between forecasts for 14 elementary school attendance area (ESAAs) and 

individual schools. Thus, data for the models had to be developed at two geographic levels: the 

District level and the ESAA level. Among data sources we used were 1990 and 2000 Census, 

administrative records such as births by mother's place of residence, student  addresses, and 

building permits, tax lot-level land use and zoning data, and household forecasts by 

transportation analysis zones (TAZs) produced by local planners. All of these data are location-

specific and therefore, all are potentially influenced by positional errors arising in the process of 

data development (geoprocessing of the data). 

 

In this paper we will discuss positional errors associated with a subset of geoprocessing tasks 

used in the study, namely, areal interpolation of population and housing characteristics between 

Census statistical areas (source zones) and the District as a whole and its elementary school 

attendance areas (target zones).  PRC’s primary method for Census data interpolation was 

intelligent dasymetric areal interpolation (see Appendix for a detailed discussion of the method).   
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An obvious first step in any spatial analysis is establishing a geographic extent of the study 

area(s): its boundaries. Although it is still common for applied demographers to encounter lack 

of digital, GIS-compatible boundary data for areas of interest, dramatic progress has been 

achieved in recent years in spatial data development at the national, state, and local levels. In 

fact, the very first challenge we faced was availability of too many sources of boundary data for 

the District.  Six sources of data were identified: the Medford School District GIS; the City of 

Medford planning department; Jackson County GIS department; Oregon Geospatial Enterprise 

Office (Oregon GEO); ESRI; and 2000 TIGER data. These data sources produced 4 different 

boundary configurations (see Fig. 1). The combined area of overlap between them takes only 3 

percent of the combined study area (all areas in color on Fig. 1). While small percentage-wise, 

this nevertheless results in about 7,200 acres where uncertainty exists about the exact location of 

the District's boundary. Which one to use, and would it matter for the accuracy of the results? 

 

Each data set has certain strengths and limitation. District-wide and ESAA boundaries produced 

"in-house" by the District GIS imply the highest degree of accuracy since they are used on a 

daily basis for a variety of tasks including bussing of students, and therefore need to be correct 

and up-to-date. They also were produced at 1:24,000 scale, which preserves more locational 

details than a more common 1:100,000 scale used in creation of 2000 TIGER data. However, 

these boundaries were poorly aligned with 1990 and 2000 source zones (Census blocks and 

blockgroups derived from 2000 TIGER) and had internal topological errors; they were also 

misaligned with tax lot data available via Jackson County GIS.  

 

District-wide and ESAA boundaries from Jackson County GIS and the City of Medford, 

produced at 1:24,000 scale, were well aligned with streets and tax lots, as well as 2000 Census 

statistical areas: Jackson County GIS has processed 2000 TIGER data to spatially match the rest 

of their GIS data. If we were to use these data, minimal discrepancies for 2000 Census data 

interpolation would be encountered. Yet the County had not updated these data layers since 

2003, while the District changed attendance area boundary configurations in mid-2004. The 

County also did not develop a matching set of 1990 Census blocks and blockgroups.  
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A boundary derived from 2000 TIGER Census blocks dissolved by the District's unique ID 

(SDUNI = 08040) represented a territory for which District-wide data were readily available 

from the Census 2000 STP23, potentially saving data processing time, but attendance area 

attributes are not recorded in the Census data. Also, the 2000 TIGER boundary seemed 

misaligned with other features, which suggested a datum or another error of reprojecting the data 

to match the Oregon South State Plane coordinate system chosen as a common system for the 

analysis. Finally, Oregon GEO and ESRI data were aligned with both 1990 and 2000 Census 

statistical areas, but there again, no ESAA boundaries were available.  

 

If the project had had a less-limited timeline and a more generous budget, it would have been 

worthwhile to update ESAA boundaries from Jackson County GIS thus minimizing known 

spatial mismatch. Under existing circumstances, a decision was made to use the boundaries 

supplied by Medford School District and correct topological errors and only most obvious 

positional errors in the data.  

 

In the following two sections  we attempt to quantify effects of positional errors (boundary 

mismatch) on estimates of 2000 Census population and housing characteristics first for the 

District as a whole, and then for ESAAs.  

                                                 
3  Census 2000 School District Tabulation Data (http://nces.ed.gov/surveys/sdds/c2000.asp) 
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Figure 1. Study Area: Conflicting Boundary Configurations 
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4. District-level (regional) analysis 

For the purposes of this analysis we assume that the boundary derived from dissolving 2000 

TIGER blocks is the true, or benchmark, boundary against which other boundaries will be 

compared. The choice is somewhat arbitrary: we do not know what boundary is most accurate, or 

closest to reality. We do know, however, that the STP2 school district Census data are provided 

for aggregations of 2000 TIGER blocks with same school district IDs. This is important as it 

gives us benchmark population and housing data, or true counts of Census characteristics.  

 

 Two measures of spatial mismatch by data source are presented in Table 1: percent difference in 

area sizes of the District as defined by the benchmark boundary versus a comparator boundary, 

and Average Distance Error between vertices of a given boundary and the benchmark. While 

there are no identifiable trends and only 3 cases of data sources, it is worth noting that the 

boundary provided by Medford School District GIS produces a higher degree of overall spatial 

mismatch than alternatives. 

 

Table 1. Spatial Error by Source of District's Boundary 

TIGER 2000 Blocks (*) 235,531 n/a n/a
Medford SD GIS 233,580 -0.83 602.8
Jackson Co. GIS 235,438 -0.04 636.1

Oregon GEO 235,699 0.07 177.2

(*) Benchmark boundary derived from 2000 Census blocks with SDUNI = 08040.
(**) Average distance from vertices of a boundary to the benchmark boundary.

Data source Acres % difference 
with TIGER

Average distance 
error, feet (**)

 
To test what difference this mismatch could make, we allocated commonly used SF1 block-level 

data and SF3 blockgroup-level data to three District boundary configurations using simple areal 

interpolation and point-in-polygon aggregation. While these methods are simplistic: the former 

assumes an even spatial distribution of source zones' characteristics, the latter assigns data to a 

target zone if a source zone's centroid falls inside it, they are quick to implement.  For one 

boundary configuration (from the District GIS), we also used "intelligent interpolation": a 

combination of dasymetric areal interpolation and expert judgment (these data were used for 

enrollment forecasts). We then compared the resulting estimates of population and housing 

characteristics with 2000 Census STP2 tabulations for Medford SD ("Census benchmarks"). The 

results are presented in tables 2 and 3. 
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Table 2. Attribute Error by Source of District's Boundary and Interpolation Method  
------------------SF1 data-------------------- ----------------SF3 data----------------

Data source Population HU Households SFHU MFHU MHO Total HU Comments

NCES Census 2000 76,667 31,615 29,928 22,530 6,710 2,375 31,615 Benchmarks from STP2

Medford SD (PRC) 76,777 31,426 29,955 22,430 6,706 2,290 31,426 "Intelligent interpolation"
Medford SD GIS 76,612 31,364 29,897 22,184 6,858 2,635 31,676 Areal interpolation 
Jackson Co. GIS 76,632 31,370 29,903 22,316 6,880 2,660 31,856 Areal interpolation

Oregon GEO 76,657 31,394 29,923 22,344 6,877 2,674 31,896 Areal interpolation

----------------Percent difference with Census benchmarks---------------
Medford SD (PRC) 0.1 -0.6 0.1 -0.4 -0.1 -3.6 -0.6
Medford SD GIS -0.1 -0.8 -0.1 -1.5 2.2 10.9 0.2
Jackson Co. GIS 0.0 -0.8 -0.1 -0.9 2.5 12.0 0.8

Oregon GEO 0.0 -0.7 0.0 -0.8 2.5 12.6 0.9
 

Key: HU = Housing units; SFHU = Single-family units; MFHU = Multi-family units; MHO = Manufactured homes.  
 

The most obvious observation following from the table is that even simple areal interpolation of 

SF1 data from Census blocks produces District totals practically identical to the benchmarks 

(differences of less than 1 percent). PRC's "intelligent interpolation", while methodologically 

more sound, makes no noticeable difference for block data interpolation at the District level. This 

result is important in practical terms: it may take days and weeks to produce data using the 

"intelligent interpolation" method, while simple areal interpolation would take just a few hours.  

However, in our study the data had to be produced for sub-areas (ESAAs) as well. In such cases, 

as we will argue in the following section of the paper, the "intelligent interpolation" method is 

worth the effort.  

 

As expected, SF3 blockgroup data processing has produced larger errors than interpolation from 

SF1 block data: an assumption of even spatial distribution of demographic characteristics inside 

source units becomes less reliable as their size and internal heterogeneity increase. Here, 

"intelligent interpolation" delivers far better results relatively to simple areal interpolation.   

 

Although, in theory, variations in the amount of error between characteristics should be 

expected, it is unclear why population and household counts came a lot closer to the benchmarks 

than either SF1 or SF3 housing characteristics. In fact, some SF3 housing data differ by as much 

as 12.6 percent from the benchmarks, a high percentage by any measure. Counts of Multi-family 

units and Manufactured homes display particularly high discrepancies with benchmarks, perhaps 



 15

due to their highly uneven patterns of spatial distribution in most areas.  

 

Data interpolation using aggregation of source zones' centroids (point-in-polygon method) is the 

least time-consuming of the methods discussed here. As evident in Table 3, block centroid 

aggregation of SF1 data to the District boundaries works almost as well as simple areal 

interpolation from blocks, although slightly worse than "intelligent interpolation" presented in 

Table 2: it has produced an average error of only 0.3 percent. Not surprisingly, blockgroup 

centroid aggregation produces larger errors: an average of 2.5 percent, up to 6.7 percent for 

counts of single-family housing units.  

 

Table 3. Attribute Error of Point-in-Polygon Aggregation by Source of District's Boundary 
------------------SF1 data-------------------- ----------------SF3 data-------------------

Data source Population HU Households SFHU MFHU MHO Total HU

NCES Census 2000 76,667 31,615 29,928 22,530 6,710 2,375 31,615

Medford SD GIS 76,503 31,321 29,857 21,700 6,692 2,324 30,716
Jackson Co. GIS 76,627 31,374 29,906 21,021 6,655 2,278 29,954

Oregon GEO 76,667 31,399 29,928 21,700 6,692 2,324 30,716

----------------Percent difference with Census benchmarks---------------
Medford SD GIS -0.2 -0.9 -0.2 -3.7 -0.3 -2.1 -2.8
Jackson Co. GIS -0.1 -0.8 -0.1 -6.7 -0.8 -4.1 -5.3

Oregon GEO 0.0 -0.7 0.0 -3.7 -0.3 -2.1 -2.8
 

Key: HU = Housing units; SFHU = Single-family units; MFHU = Multi-family units; MHO = Manufactured homes.  
 

Overall, it appears that at the District level of analysis errors in the boundary configuration have 

had no practical effect on accuracy of aggregated SF1 attribute data. Errors of SF3 data 

interpolation (aggregation) are higher and seem to justify a more sophisticated approach to data 

processing, such as "intelligent interpolation". We propose to use a ratio of average population of 

source zones and target zones as a simple and practical way to choose data interpolation method. 

In this study, the ratio of average population of blocks with centroids inside the District, and the 

District's population is 0.0005. For block groups, the ratio is 50 times higher: 0.0254. It seems 

reasonable to assume that the higher the ratio, the higher the likelihood of misallocation of the 

data when simple methods of data interpolation are used. However, additional analysis will be 

necessary to fully establish parameters of the relationship.
                                                 
4 The focus here is not on the relative population size of blocks and block groups, but on the relationship between 
their sizes and that of the target unit(s).   
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5. ESAA-level (local) analysis 

No true (benchmark) boundaries or benchmark demographic data were available at the ESAA 

level of analysis. While this has prevented us from establishing an exact amount of attribute 

errors in interpolated population and housing characteristics, it still allows to evaluate the 

magnitude of spatial errors and how much they vary from one school attendance area to another.  

 

As Table 4 demonstrates, ESAAs differ in their population, area, and other characteristics. The 

ESAA population varies from approximately 3,000 people in Ruch ESAA to 8,700 people in 

Wilson ESAA. The smallest ESAA, Washington, occupies only 348 acres, while the largest, 

Ruch, encompasses 179,522 acres. Not surprisingly, the smallest ESAA is also the most urban, 

with 15.5 persons per net residential acre and 193 feet of streets per gross acre, while the largest 

ESAA is the most rural, with only 0.2 persons per net residential acre and 14 feet of streets per 

gross acre.   

 

Table 4. Population and Spatial Characteristics of Elementary School Attendance Areas 

Target Units Acres Total 
population

Net population 
density, per acre

Street density, 
feet/acre

Number of 
vertices

ESAAs:
Abraham Lincoln 6563.1 4,900 2.4 26.5 126

Griffin Creek 10722.8 5,958 1.0 26.1 170
Hoover 6204.8 6,463 2.2 42.9 138
Howard 707.6 5,148 8.5 124.4 89
Jackson 765.8 5,175 11.3 166.3 53

Jacksonville 15794.9 4,710 0.9 25.3 129
Jefferson 1357.6 5,135 6.5 136.7 114
Kennedy 2629.7 5,978 4.6 57.7 86

Lone Pine 1114.2 6,470 5.9 131.8 101
Oak Grove 3316.1 4,538 4.0 46.4 128
Roosevelt 749.8 5,819 9.6 152.8 92

Ruch 179521.5 3,078 0.2 14.1 151
Washington 347.8 4,701 15.5 193.1 68

Wilson 3784.5 8,704 8.2 79.8 166

District: 233580.1 76,777 1.9 21.3 408  
 

The number of vertices (points determining location and shape of a boundary line) can be 

considered a measure of complexity of the boundary: when a boundary segment is a straight line, 

only two vertices are necessary to define its location, shape, and length. However, when a 

segment is bent or irregular, several vertices are needed to approximate its shape. Boundary 

complexity tend to increase with area's size, although there are variations in this relationship: the 
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largest ESAA (Ruch) is only 3rd as far as the number of vertices is concerned, and the smallest 

ESAA (Washington) has the 2nd lowest number of vertices. 

 

This study uses several measures of spatial error. Two of them were first proposed by Simpson 

(2002): Degree of Hierarchy and Degree of Fit. These measures quantify the amount of error 

associated with interpolation of source units (in our study, 2000 Census blocks) to target units 

(the District as a whole; individual ESAA). Degree of Hierarchy (DH) is a ratio of the number of 

source units (zones) that completely fit into a target zone, and the total number of source units 

(zones). The higher the ratio, the lower the mismatch between source and target zones, and the 

higher the accuracy of resulting estimates. We chose to express it as percent, to be comparable 

with the second measure, Degree of Fit (DF). The latter evaluates similarity between source and 

target zones5. The higher the value, the lower the error. The first two columns of Table 5 display 

these measures by ESAA. 

 

Table 5. Measures of Spatial Error by Elementary School Attendance Area 

Target Units  Area 
(C5)

Persons 
(C6)

Households 
(C7)

Housing 
Units 
(C8)

 Area 
(C9)

Persons 
(C10)

Households 
(C11)

Housing 
Units 
(C12)

ESAAs:
Abraham Lincoln 55.4 75.1 132.69 46.3 44.8 44.8 44.5 7.8 5.6 5.5 5.5

Griffin Creek 68.1 83.0 428.76 76.8 32.2 32.5 32.9 2.6 3.9 4.1 4.2
Hoover 63.4 79.2 167.13 60.1 48.7 49.4 49.8 2.1 2.5 2.5 2.5
Howard 76.4 85.9 105.55 27.6 32.1 36.9 37.2 1.2 1.0 1.0 1.0
Jackson 71.1 89.6 38.18 35.1 26.1 25.3 25.5 1.8 1.3 1.2 1.2

Jacksonville 83.7 91.2 530.85 50.6 26.5 24.3 23.9 16.0 6.7 6.1 6.1
Jefferson 72.7 88.3 84.42 28.4 20.1 18.9 18.5 3.2 2.9 3.0 3.0
Kennedy 58.8 79.1 120.37 41.3 41.8 39.9 39.8 5.3 3.0 2.8 2.9
Lone Pine 47.9 80.5 76.17 48.5 42.1 42.0 42.1 2.4 2.6 2.7 2.8
Oak Grove 52.7 69.3 157.71 48.6 33.3 34.7 34.4 7.5 8.6 8.5 8.6
Roosevelt 75.5 85.9 106.02 32.5 20.9 22.6 22.4 0.6 0.7 0.5 0.6

Ruch 85.0 90.3 491.34 15.8 15.3 14.3 14.0 5.9 5.4 5.2 5.1
Washington 68.9 87.8 76.86 24.5 22.4 23.0 23.1 1.2 1.3 1.1 1.1

Wilson 61.9 76.6 98.63 34.7 28.6 29.4 29.0 8.1 9.2 9.8 9.5

District: 88.4 94.2 263.9 38.6 31.9 31.9 31.8 6.2 4.0 4.0 4.0

Percent in split source units with 
Interpolation coefficient < 0.5Percent in split source units

Degree of 
hierarchy 

(C1)

Degree 
of fit 
(C2)

Average 
distance 
error (C3)

 
 

As evident from the table, almost 9 out of 10 Census blocks interpolated to the District 

completely nest into it (DH 88.4), and there is a high degree of similarity between the source 

                                                 
5 It calculates the ratio between the sum of each source zone's highest (maximum) interpolation weight (coefficient), 
and the total number of source zones. In simple areal interpolation, the weight is the proportion of the source zone's 
area in the total area of the target zone. If  there is no split , the weight equals 1 and the measure equals 100.  
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zones (blocks) and the District (DF 94.5). This support the conclusion of the earlier analysis: a 

fairly low spatial error is associated with SF1 block data interpolation at the District level.  

 

However, once the analysis moves a step down geographical hierarchy, to ESAAs, and source 

units become more likely to be split by boundaries of target units, higher spatial errors are 

observed. Degree of Hierarchy ranges from 47.9 in Lone Pine ESAA (less than half of 

interpolated blocks fit completely (nest) into the ESAAs) to 85.0 in Ruch ESAA (8.5 out of 10 

blocks nest into it).  In other words, spatial error resulting from both positional errors and 

legitimate mismatch of the boundaries affects more than a half of blocks and related variables 

interpolated into Lone Pine ESAA. At least two more ESAAs show similarly high levels of error.  

Degree of Fit follows a similar, although not identical pattern: overall, it increases with an 

increase of DH. The measure varies from 69.3 in Oak Grove ESAA to 91.2 in Jacksonville 

ESAA.  

 

An interesting pattern emerges once spatial distribution of the two error measures are displayed 

on a map (Figures 2 & 3). On both maps, there is an obvious cluster of low values in the north-

eastern corner of the map, in the City of Medford and its immediate vicinity. To the contrary, 

two ESAAs in the rural and mountainous southwestern corner of the study area show high(est) 

values. It appears that block data interpolation in more densely populated urban and suburban 

areas produces higher levels of spatial error than interpolation from rural, sparsely-populated 

blocks. This finding seems counterintuitive at first: in cities, street locations and other TIGER 

features are well-known and have been mapped for decades, which should result in more 

accurate representation of block boundaries based on these features. However, if we take into 

consideration the reality of boundary mismatch, the results start making sense. With most 

administrative boundaries drawn along street centerlines or tax lot (property) boundaries, even a 

small misalignment of Census blocks and, in our case, ESAAs, would result in slivers. The 

number and relative area of slivers are taken into account by both measures of spatial error 

discussed here. When boundaries of source and target zones are misaligned, more slivers would 

result from a polygon overlay of source and target zones in areas with relatively denser street 

pattern. 



Figure 2. Degree of Hierarchy by ESAA  

 

 
 

 

Figure 3. Degree of Fit by ESAA  
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To investigate the amount of spatial error more fully, several additional measures were 

calculated (Table 5). Average Distance Error (C3) evaluates the linear extent of spatial mismatch 

by computing an average of shortest distances between each vertex of a target zone boundary 

and its closest source zone boundary6; the higher the distance, the larger the error.  

 

The next 8 measures quantify effects of boundary mismatch on several key ESAA characteristics 

(area, population, households, and housing units). They show percentage of a target zone's 

characteristic derived from split source units: Census blocks split by ESAA boundaries. For 

example, 60 percent of Hoover ESAA's total area (variable C5) is aggregated from split Census 

blocks, while only 15.8 percent of Ruch ESAA's area comes from such blocks. In Hoover ESAA, 

49 percent of persons and households and 50 percent of housing units are found in split blocks, 

while only 14-15 percent of these characteristics come from split blocks in Ruch ESAA7.  While 

we cannot claim that ESAA population and housing characteristics resulting from interpolation 

are 14, 49, or 60 percent wrong, we propose to use these numbers as measures of uncertainty 

associated with the variables. It seems reasonable that the higher the share of a variable that is  

calculated from split blocks, the larger associated potential interpolation error, and the less 

reliable (more uncertain) resulting attributes become.  

 

Variables C9 through C12 are similar to C5 through C8 in that they also identify percentage of a 

characteristic in split source areas. However, the criteria are narrower here: only split blocks that 

are less than 50 percent of their original area are used for calculation. The limit is somewhat 

arbitrary and chosen under an assumption that an interpolation coefficient 50 percent or higher 

would result in more reliable interpolated characteristics.  

 

It is obvious from a quick analysis of Table 5 that spatial errors and spatial uncertainty vary 

considerably by ESAA, and some values are quite large. Overall, one third of all persons, 

households, and housing units were derived from split source zones at the ESAA level of 

analysis. For individual ESAAs, between 14 and 50 percent of these characteristics came from 
                                                 
6 This is different from the District-wide analysis where the distance was measured between vertices of a given 
District boundary and the benchmark boundary.  
7 "Intelligent interpolation" method was used to derive characteristics of target units.  The Interpolation Coefficient 
is a proportion of a source zone's area in the target zone's area where area calculations are limited to residential land 
only (see Appendix).  
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split blocks. Since any interpolation method requires assumptions about distribution of Census 

characteristics within source zones, even "intelligent interpolation" weakens reliability of the 

resulting data. In our study,  for 10 out of 14 ESAAs, more than a quarter of their population and 

housing characteristics were affected by interpolation error; for one half of ESSAs, more than 30 

percent were affected.    

 

Predictably, variables C9 through C12 are not as high as variables C5 through C8: only a subset 

of split blocks and their characteristics is considered. Still, in some cases share of ESAA 

characteristics derived from block pieces less than a half of their original size raises up to 10-16 

percent.  

 

To evaluate if there are any commonalities between the measures of spatial error, correlation 

coefficients (Spearman's rho) were calculated for pairs of error measures as well as other ESAA 

characteristics (see Table 6).  

 

Table 6. Correlation coefficients (Spearman's rho) 

Variable Name C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
Degree of hierarchy C1 1.000
Degree of fit C2 0.854** 1.000
Average distance error C3 0.240 0.000 1.000
Number of vertices C4 -0.011 -0.180 0.679** 1.000
% area in split blocks C5 -0.486 -0.389 0.402 0.407 1.000
% persons in split blocks C6 -0.758** -0.744** 0.130 0.125 0.705** 1.000
% households in split blocks C7 -0.710** -0.713** 0.029 0.020 0.600* 0.982** 1.000
% housing units in split blocks C8 -0.710** -0.713** 0.029 0.020 0.600* 0.982** 1.000** 1.000
% area in split blocks, IC < 0.5 C9 -0.196 -0.224 0.484 0.583* 0.308 0.161 0.059 0.059 1.000
% persons in split blocks, IC < 0.5 C10 -0.295 -0.339 0.482 0.673** 0.343 0.180 0.064 0.064 0.961** 1.000
% households in split blocks, IC < 0.5 C11 -0.266 -0.304 0.459 0.688** 0.336 0.143 0.029 0.029 0.959** 0.995** 1.000
% housing units in split blocks, IC < 0.5 C12 -0.266 -0.304 0.459 0.688** 0.336 0.143 0.029 0.029 0.959** 0.995** 1.000** 1.000
Street density, feet per acre C13 -0.068 0.092 -0.908** -0.763** -0.437 -0.270 -0.182 -0.182 -0.673** -0.660* -0.644* -0.644* 1.000
Area (in acres) C14 0.042 -0.035 0.811** 0.824** 0.451 0.160 0.051 0.051 0.761** 0.748** 0.749** 0.749** -0.934** 1.000
Net population density per acre C15 -0.029 0.031 -0.873** -0.741** -0.499 -0.266 -0.160 -0.160 -0.629* -0.607* -0.600* -0.600* 0.960** -0.930** 1.000  
**. Correlation is significant at the 0.01 level (2-tailed).   
*. Correlation is significant at the 0.05 level (2-tailed).   
 

Many measures of spatial error are significantly correlated. As expected, Degree of Hierarchy 

(C1) and Degree of Fit (C2) are positively and significantly correlated with each other, and are 

negatively correlated with nearly all other spatial measures: C1 and C2 get higher when 

boundaries are more simple (closer to straight lines), fewer blocks are split, and fewer and 

smaller slivers result. This negative correlation becomes highly significant with measures C6, 

C7, and C8: percentages of a target zone's persons, households, and housing units derived from 
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split source units. However, C1 and C2 quantify somewhat different aspects of spatial mismatch: 

C1 tends to be higher where blocks are larger, less urban, and less densely populated while C2 

appears to be lower in these areas (but the relationships are not significant).  

 

Average Distance Error (C3) is higher where target zones' boundaries are more complex (C4), 

blocks are larger (C14), less urban (C13), and less densely populated (C15); these relationships 

are significant. This makes sense: with many block boundaries drawn along straight street 

centerlines, more irregular ESAA boundaries would produce a bigger mismatch. Blocks in rural 

and mountainous areas are often very large and irregular, increasing the likelihood that other 

boundaries would not match with them. While correlation between C3 and measures C5-C12 is 

positive, as expected, it is not significant.  

 

Measure C4 (number of vertices) behaves in a similar manner, except that its correlation gets 

much stronger (and significant) with measures C9 through C12. More complex ESAA 

boundaries are less likely to follow streets and more likely to split blocks into slivers of larger 

size.   

 

Not surprisingly, measures C5-C8 are positively and significantly correlated amongst 

themselves, and so are measures C9-C12: measures in each of these groups were calculated in 

the same manner. Additionally, the latter group is negatively and significantly correlated with 

street density and net population density: areal size of slivers as a proportion of target zones tend 

to be lower in more urban areas resulting in lower values for measures C9-C12.  
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6. Discussion and conclusions 

This study has examined a real-life example of small area demographic analysis and some of its 

challenges commonly encountered by applied demographers. Choices with regard to spatial data 

sources and geoprocessing methods of data development have been discussed. The analyses of 

spatial errors resulting from boundary mismatch have been conducted at two geographical levels: 

regional, for the District as a whole, and local, for its elementary schools attendance areas 

(ESAAs). At the regional level, we have been able to quantify both the extent of positional errors 

and the effect they have on population and housing characteristics vis-à-vis benchmark data 

when interpolated from source to target zones using several common geoprocessing methods.  At 

the local level, no benchmark data was available; however, we have been able to investigate 

variations by ESAA of different measures of spatial errors. 

 

The analysis presented here supports the authors' claim that applied demographers should 

seriously consider issues of positional accuracy when conducting small-area analysis. The 

predominant expectation that errors of spatial interpolation just "wash out" when the data is 

aggregated is not supported by our results. Only block data interpolation, and only at the District 

level has produced negligible errors in population and housing characteristics. With blockgroup 

data, errors have increased to 10-13 percent depending on the interpolation method, data source, 

and the variable under consideration; this suggests that "intelligent interpolation" becomes a 

necessity for this scale of analysis.   

 

These results, however, are likely to vary with the size of a study area and its population. Areas 

comparable with ESAAs (an urban neighborhood, a 10-minute walking zone around a store) may 

need to use "intelligent interpolation" even for block data, while much larger areas (a big school 

district, a part of a large county, an area within an urban growth boundary of a large city) might 

"get away" with simpler methods of spatial data aggregation. We have proposed to use a simple 

measure of relative population sizes of source and target zones (a ratio of average population of 

source zones and a target zone) to determine what method is more appropriate. In our study, the 

ratio for blocks vis-à-vis the District was 0.0005; for block groups it was 0.025. Incidentally, the 

ratios calculated at the ESAA level (average population of blocks inside an ESAA to ESAA's 

total population) were a lot closer to the latter number than the former: while varying from 0.020 
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to 0.009, an average of the ESAA ratios was 0.014. This lands additional support to our original 

choice of the "intelligent interpolation" method for data development at the ESAA level.  

 

Several measures of spatial error were examined at the ESAA level. They evaluate how well 

source and target zones fit (nest) into each other, how similar their spatial configurations and 

boundary shape and locations are, and what share of a target zone's Census characteristics is 

affected by uncertainty associated with mismatch between source and target zones. While most 

measures are significantly correlated, they nevertheless describe somewhat different aspects of 

spatial error.  The measures show substantial variation by ESAA providing additional evidence 

that errors do not tend to "wash out" at the local level.   

 

The analysis shows that up to 50 percent of population and housing characteristics in a given 

ESAA can be derived from split source zones; on average, up to 32 percent of ESAAs' Census 

characteristics are affected by boundary mismatch. While we do not know how much error this 

introduces into interpolated counts without comparing the measures to Census benchmarks, the 

amount of uncertainty associated with them appears non-trivial and worth further investigation.  

 

Lower levels of both Degree of Hierarchy and Degree of Fit in most of urban Medford ESAAs 

challenge a common assumption that spatial errors should be lower in more developed and 

denser populated areas due to more reliable data infrastructure. When boundaries of source and 

target zones (i.e., Census blocks and ESAAs) are misaligned, errors appear higher in more urban 

areas than in rural and less populated ones. 

 

While this study has not directly measured the effect of varying geographic scales at which 

spatial data was originally developed on subsequent interpolation errors, its results suggest the 

need for Census TIGER data to be developed at a scale more common to municipal and other 

local government application (1:24,000 versus current 1: 100,000). This may be especially 

important once small-area American Community Survey data will become available. It would 

greatly help data users if they would have to deal with fewer than three types of error that are 

likely to be associated with ACS data:  common survey errors (sample and non-sample), errors 

of averaging data over time (3 to 5-year time period), and spatial errors of boundary 
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misalignment.  

 

There are several limitations to the study and its conclusions. This is a case study, which raises 

the issue of applicability of its results to other situations. It would make it stronger if several 

school districts were analyzed, and the number of ESAAs increased from the current N of 14 to 

at least 50. As noted above, due to data limitations we could evaluate the degree of positional 

error associated with boundary mismatch at the ESAA level, but not the effect of positional error 

on estimated population and housing characteristics. We also could not separate the effects of a 

"legitimate mismatch" (a true overlap of the boundaries) at the ESAA level from a misalignment 

of the boundaries (a true positional error); to do so, "benchmark" ESAA boundaries are 

necessary.  Also, we estimated errors at the polygon level (District, ESAA), but not at the 

boundary level.  It has been shown by (Gaeuman et al. 2005) that significant local positional 

error can be associated with local boundary forms (sinuosity).   

 

Nevertheless, we hope that this study advances an understanding among applied demographers 

of spatial errors and their importance for accuracy of estimated population and housing 

characteristics. We believe that, similarly to reporting confidentiality intervals for sample 

attribute data, measures of spatial error and/or spatial uncertainty should accompany analyses 

involving spatial interpolation of the data, be they of applied or academic nature.  
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Appendix. Interpolation of Census data8 
 
Interpolating Census demographic and housing data to ‘custom’ boundaries, such as attendance 
areas, is the most complex of the GIS methods utilized for the forecast.  In addition to standard 
GIS geoprocessing techniques, PRC used “dasymetric areal interpolation” for most of the Census 
data, though interpolation of housing units by structure type, for 2000 Census data, required ad-
hoc uses of primarily tax lot attributes. 
 
Dasymetric mapping relies on ancillary geospatial data to find the right locations for some other, 
geographically aggregated, data set. In the Medford case, Census blocks are the primary level of 
aggregation, and zoning, for example, is one ancillary, “helper” geospatial dataset that helped us 
find more realistic distributions of data corresponding to a given block. Blocks themselves are 
fairly small units and in most cases provide the necessary level of disaggregation as-is. However, 
sometimes, particularly with large blocks, it is possible and useful to identify portions that are 
not likely to be populated.  It is not likely, for example, that people live on commercially zoned 
land. In such a case, the portion of a given Census block that intersects the commercial zone is 
‘erased’ and it is assumed that people live in the non-commercial part. This is the “dasymetric” 
part of the method: one ancillary geospatial dataset, the zoning, is used to find more realistic 
locations for another geographically aggregated dataset, population by Census blocks. 
 
A fairly exhaustive list of helper-data was used to develop a spatial theme distinguishing 
residential areas from non-residential areas. The theme was developed to be inclusive rather than 
precise; thus, for example, in most cases zoning was used rather than parcel-level attributes. 
 
Once Census blocks are adjusted by the residential theme, attribute data can be interpolated to 
custom boundaries – the attendance areas. The attendance areas are used to select blocks that fall 
completely within a given attendance area boundary, or to cut blocks, as if using a cookie-cutter, 
when they do not fall completely within. This is where areal interpolation is used.  Here it is 
assumed that block-level attribute data are evenly distributed throughout the residential portion 
of a given census block.  For those blocks that are cut by attendance area boundaries, attribute 
values, such as population, are weighted by the proportion of the block that ends up in a given 
attendance area. For example, if an attendance area boundary cuts through the middle of a 
Census block, half the population is allocated to one side of the boundary while the other half is 
allocated to the other side of the boundary. 
 
After adjusting for residential versus non-residential areas (dasymetric mapping) and areal 
interpolation, Census variables can then be summed by attendance areas and the District as 
whole. 
 
The two primary sources of error for this method arise from spatial mismatches between the 
Census block boundaries and the District attendance area boundaries, and the accuracy of the 
identification of residential versus non-residential areas.  For the former, the spatial 
representation of a given block boundary can typically be 50-100 feet off from more precise tax 
lot themes, for example, which might place some of the block’s population in one attendance 
area when it might belong to another. Beyond using matched 1990 and 2000 Census blocks, and 
                                                 
8 From (Sharkova, Radin, and Lycan 2005) 
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visual scans for locations that would obviously pose a problem, no special methods were 
developed to eliminate this type of error.  For the latter, identification of residential areas erred 
on the side of caution such that no population could possibly go uncounted. 
 
Finally, an exception to the above method was necessary to interpolate 2000 Census housing by 
structure type to attendance areas.  This variable is available at the block-level for 1990, yet only 
at the block group level for 2000.  Here the tax lot attribute “building code” was used to develop 
interpolation coefficients.  Tax lots were selected by building codes that identify residential units 
and the locations were coded for number of units and unit-type (SFR, MFR or ‘Other’).  
Interpolation coefficients, by which the block group-level variables (SFR, MFR, and Other) 
could be multiplied, were then derived by dividing the number of units (or “unit factor”) by type 
by tax lot, by the sum of unit factor by type by block group. In other words, housing units by 
type by tax lot, divided by the sum of housing units by type by tax lot by block group geography, 
were used to allocate block group-level housing units by type to more realistic locations with a 
given block group. Once this is completed, the units can then be spatially joined to attendance 
areas.  Ultimately, this interpolation was used only as an adjustment coefficient to reallocated 
block-level housing unit data at the attendance area level, not as the basis for the number of 
units. 
 
 


