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1. Introduction 

Some of the primary conclusions from The European Fertility Project (EFP) were 

important to build a consensus view about both historical and contemporary fertility 

transitions – namely, that they are only weakly associated with changes in living 

conditions, modernization, or development.  Since Coale’s first summary (1973), the EFP 

results and their interpretation have faced serious scrutiny.  In brief, it has been argued that 

1) the EFP authors too quickly dismissed the possibility that fertility change was an 

adjustment to changing social and economic circumstances, and 2) that the failure of their 

models and data to explain either the onset of fertility decline or its pace resulted more from 

technical problems with the analysis than from any underlying reality about the nature of 

fertility transitions (Brown and Guinnane 2002).  Technical problems included the large 

size of many of the provinces that constitute the units of analysis, the inadequacy of 

attempts to date the onset of the transition (Guinnane et al. 1994), the lack of appropriate 

indicators of economic circumstances, and the failure to account for endogeneity and 

unmeasured heterogeneity in statistical models.  Another limitation of the EFP was that 
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while the authors often provided a wealth of maps of fertility and its components, they did 

not utilize modern spatial statistics in their analyses.   

Following on the EFP conclusions were a number of influential overviews of the 

experience of developing and developing countries that found a weak relationship between 

development indicators and the fertility transition (eg. Cleland and Wilson 1987; Bongaarts and 

Watkins 1996), as well as a spate of research aimed at assessing the role of  diffusion processes 

and social interaction in the adoption of modern contraception and other practices related to 

fertility decline.   With the passage of time, and the spread of fertility decline to ever larger 

fractions of the world’s population, attention has shifted from the earlier to the later stages of 

the fertility transition.  There is more interest now in the question of when fertility decline will 

stop than in when it will begin.  Not only are there quite a few formerly developing countries 

where fertility has fallen to “lowest-low” levels, but there are countries where the fertility 

transition seems to have “stalled” at levels well above replacement (Westoff and Cross 2005; 

Bongaarts 2005). 

A possible approach to shed light on both the EFP issues and those related to the 

end point of the fertility transition is to use data on the local experience for relatively small 

spatial units within countries.  With large sample microdata, we are presently conducting a 

study of the Brazilian fertility transition to find out how levels and changes in social and 

economic conditions affected the timing and pace of fertility decline in this large, 

heterogeneous South American country.  The microdata are from the five censuses carried 

out from 1960 to 2000, and have geographic identifiers as far down as the municipality 

(county) level.  For some purposes, we have found it convenient to work with a set of 502 

microregions.  These are aggregations of municipalities that we built up so as to form 

comparable areas across the five points in time.  Since the population of many of these 

units is quite small, even with our large samples (10% to 25%), conventional estimates of 

the TFR for the least populated these areas may be dominated by sampling noise, while 

TFR estimates for some other units will be based on the experience of hundreds of 

thousands of women.    

On the positive side, we have a large number of spatial units, a great deal of 

variation between them in terms of both fertility and development, and a lot of change over 

the forty year period of observation.  We are challenged, however, by two limitations.  
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First, estimates of fertility for some of the units are subject to considerable sampling 

variation, and, second, our time series for each unit is quite sparse, consisting of only five 

points.  One way to overcome both of these limitations is to use spatial relationships to 

increase the signal-to-noise ratio and empirical support for the estimated schedules and 

trend patterns.   As we have shown elsewhere (Assunção et al. 2005), the spatial correlation 

between neighboring areas can be taken advantage of to produce more stable estimates of 

fertility rates.  But, in this instance, it can also help us to estimate trend models that capture 

the main features of local fertility transitions.  

In this paper, we will present results from the application of a new Bayesian spatial 

method to estimate the timing and speed of the fertility transition in each of the 502 

Brazilian microregions.  The model we fit to the time series of TFR estimates for each 

microregion is a logistic curve.  After presenting parameter estimates, we assess how well 

our estimated curves fit the data, and, in particular, where the logistic assumption seems to 

create large residuals.  We then proceed to test some of the main hypotheses or stylized 

facts regarding the timing of the onset of the fertility transition, and the speed with which it 

proceeds.  Finally, we discuss the implications of these results for forecasting the future of 

fertility in Brazil.   

 

2.  Data and Methods 

  The microdata used in this study are from a series of population censuses in Brazil 

covering a 40 year period (1960, 1970, 1991, and 2000). The information on fertility comes 

from long form questionnaires that were applied to a 25% sample in 1960, 1970, and 1980, 

and to around 12.5% of the population in 1991 and 2000.  For the year preceding each 

census from 1970 on, we have the number of children born in the year preceding the census 

for each woman of reproductive age.  We used this information to construct age-specific 

fertility rates for each microregion at each point in time.  We then adjusted these rates 

based on the enumeration of children under age five, adjusted for an estimate of 

survivorship based on the census information on surviving and deceased children ever born.  

However, in 1960 the data on current fertility were not available, and the TFR for 1960 was 
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estimated assuming that the age pattern of fertility was the same as in 1970 (Potter, 

Schmertmann, and Cavenaghi 2002). 

The number of women in the sample, for each unit of analysis at any of the five 

points in time, varies dramatically (from 1,117 to 3,740,469).   Also, the data for 1960 is 

not complete in terms of the coverage for the entire country.  For historical administrative 

reasons, there are nine states for which there no microdata are available.  Data is missing 

for all of the states in the North region, two states in the Northeast (Maranhão and Piauí), 

one in the Southeast (Espírito Santo), and one in the South (Santa Catarina). 

To establish the comparable geographic regions used in our analysis, we began with 

a 1991 boundary file for municipalities. We then worked backwards and, later, forwards 

with documentation regarding the subdivision of municipalities (cartograms and lists of 

municipalities) for all other years.  In 1960 Brazil had 2,766 municipalities, and by 2000 

there were 5,507.  For the longitudinal analysis, we constructed minimal municipal 

comparable areas, which by 2000 were a total of 2,672 geographical units.  For this paper, 

we used a geographical unit aggregated at the next higher level, called a microregion. These 

geographical areas are defined by the Geographic Department of Brazilian Bureau of 

Census according to economic homogeneity and commercial transportation links.  Based on 

the definition of microregions in 1991, we formed 502 areas that were comparable across 

the entire period and comprised of one or more comparable municipal areas.  A more 

detailed description of how we constructed the boundary files at the microregion level is 

available in an earlier paper (Potter, Schmertmann and Cavenaghi 2002). 

We use Bayesian spatial methods to study the timing and speed of the fertility 

transitions in each of the microregions by fitting a unique logistic time path for the TFR in 

the census years for which we have fertility data (1960, 1970, 1980, 1991, 2000). Let Fi(t) 

be the TFR in region i and time t. Conditional on parameters yet to be specified, we assume 

that Fi(t) is a random variable with normal distribution with variance )(2 tσ and mean  

( ) ( ) ( )( )ii t
iiii eFpostFpreFposttFE τβ −−+−+= 1)(  

In this model, Fprei and Fposti are the initial and final levels of TFR along a transition path; 

these two parameters are estimated from the data.  Initially, we made the strong assumption 
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that they were common to all regions, but later found that it was both desirable and feasible 

to relax that assumption so that values of each were estimated for each microregion. The 

parameter τi is the halfway point of the fertility transition in region i (i.e., the time at which 

transition is 50% complete), and βi represents the speed of the transition in region i. Note 

that we expect βi < 0, with larger absolute values representing more rapid fertility declines.   

Because we assume that each microregion has a unique transition path (βi,τi, Fprei, 

Fposti), there are more than 2,000 parameters to estimate simultaneously for Brazil as a 

whole.  If we assume independence of parameters across space, then two parameters have 

to be estimated separately in each area from only a handful of observations and estimates 

will be very noisy.  It is therefore desirable to impose additional constraints. In the 

Bayesian approach this is accomplished by specifying a prior distribution in which 

neighboring microregions are likely to have similar parameter values.  Specifically, we use 

a Markov random field (MRF) as a spatial prior for both β and τ, thereby building in an 

assumption that the map for each parameter is relatively smooth across space. For the 

fertility decline speed parameters (the betas), this MRF model implies that the distribution 

of iβ given the values of its neighboring values are normally distributed around iβ , the 

arithmetic mean of parameter values among the ni neighbors of area i.  The inverse of the 

conditional distribution variance is given by inβρ , with βρ  being called the precision 

parameter.  Note that this precision parameter controls how similar a priori the iβ value is 

to its neighbors’ mean value iβ  and, in this sense, can be considered a measure of prior 

spatial correlation.  We will have more to say about this precision parameter later. 

This assumption effectively reduces the number of independent parameters to a 

number far below 2,000, allowing us to estimate time trend parameters for any given region 

by “borrowing strength” from its neighbors.  By specifying MRF prior distributions for 

parameters (β1,...,βN), (τ1,...,τN),  (Fpre1,...,FpreN), (Fpost1,...,FpostN), in which neighboring 

areas are more likely to have similar parameter values, we make it likely that the 

parameters’ posterior distributions (which are estimated from the combination of data and 

priors) will have the same property. The MRF prior distribution does not dictate the 

location of high and low parameters values on a map. Rather, it merely assumes that 

neighboring parameter values are dependent, and tend to be similar.   
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Bayesian inference proceeds by generating samples from the posterior distribution 

of all parameters. From these posterior samples we make inferences about parameters.  For 

example, suppose that we simulate a large sample of S possible values for the speed of the 

transition in region i, { )()1( ,..., S
ii ββ }, from the posterior distribution.  We can then produce a 

point estimate for βi using an estimate of the posterior distribution expected value (namely, 

the arithmetic mean of { )()1( ,..., S
ii ββ }), or a credibility interval from the quantiles of 

{ )()1( ,..., S
ii ββ }.    

We generate posterior distribution samples using Markov Chain Monte Carlo 

(MCMC) algorithms. Starting from arbitrary and valid parameter values (or states, in 

MCMC terminology), there are theorems proving that, under very general conditions 

(Smith and Roberts, 1993) if the chain runs long enough, a Markov chain state at step n will 

be distributed approximately according to the Markov chain stationary distribution. Then, 

the basic idea of MCMC algorithms is to design a Markov chain model which has the 

posterior distribution as its unique stationary distribution, start from arbitrary parameter 

values and, after a rather long burn-in period, start to collect the Markov chain states (or 

parameter values) generated.  This produces a dependent sample rather than an independent 

sample but this does not prevent drawing inference by means of the ergodic theorem 

(Tierney, 1994).   

We produced our estimates of the logistic curve parameters with WinBUGS 1.4, a 

well known and commonly used software package/language for MCMC estimation of 

Bayesian models (Spiegelhalter et al., 2000). ). Our priors include Markov Random Fields 

for all four parameters (β1,...,β502),…,(Fpost1,...,Fpost502).  In the Markov fields, we further 

assume that the strength of spatial dependence across Brazil is uncertain, by modeling the 

variability of each parameter in a given area around its neighbors’ mean value (the inverse 

of the precision parameterτ ) as a hyperparameter with its own hyperprior. Using the β 

parameter to be specific, the precision parameter βρ  has a prior distribution equal to a 

gamma distribution with parameters 0.01 and 0.01, which implies in mean and standard 

deviation equal to 1.0 and 10, respectively. All four precision parameters, βρ , τρ , postρ , 

and preρ , received this same prior distribution.  
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We centered the MRF prior distributions around global values which received prior 

distribution with large variance.  For example, the vector (β1,...,β502) were centered a priori 

around a global value normally distributed with mean 0 and variance 100, allowing for a 

flat prior distribution over the range of likely values for this global parameter.  We made 

similar choices for the other four spatially structured parameters. The variances of the Fi(t) 

were modeled a priori as an inverse gamma with parameters 0.001 and 0.001.    

All the WinBUGS runs were obtained with a burn-in of 100,000 runs followed by 

200,000 additional runs from which we saved every 10-th value for the statistics. Therefore, 

each point estimate in the next section is based on a sample of 20,000 values. Usual tests of 

convergence and stability of results against widely different (but plausible) initial values 

were ensured.    

One additional problem is the lack of observed values for Fi(t) in some Northern 

areas when t=1960.  To fit the models, we allow these missing data to be estimated as 

parameters by the Bayesian procedure.  To do that, we used two alternatives: we gave 

initial values compatible with the successive observed values in each area as well as 

allowing the WinBUGS program to randomly generate them from the prior distribution. 

The results are virtually the same and we report only those from the first alternative.  

 

3. Results 

Preliminary Estimates and the Decision to Let Fpre and Fpost Vary 
 

We first obtained preliminary estimates for fertility transitions over 1960-2000 in 

the 63 microregions in the state of São Paulo, and later for all 502 microregions (all of 

Brazil) assuming a single unique value for Fpre and Fpost.  For the 63 São Paulo transitions, 

the Bayesian point estimates of these levels were 6.26 and 1.55, respectively.  When we 

then expanded the sample to all 502 microregions, these levels changed to substantially 

higher values: 7.14 and 1.98.  This divergence, as well as examination of the residuals in 

the individual estimates motivated us to attempt to estimate models with more parameters, 

first letting Fpre vary, and then letting Fpost vary as well.   The results are presented in the 

next sub-section. 
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Estimates of Four Parameters for All 502 Microregions 

 We present our estimates, in the first instance, on the spatial grid by way of thematic 

maps.  Figures 1 and 2 are maps showing the location in time of the transition in each 

microregion.  The first map shows the year in which the transition was estimated to have 

reached 10 percent completion (2.19725/βi + τi), which, following convention, we will refer 

to as the “start” date.  The second shows the year at which the transition in each 

microregion is estimated to have reached its halfway point (τi).  The estimates of the Start 

dates Figure 1 show that the fertility transition started in selected areas of the South and 

Southeast regions well before 1960, the beginning of our period of observation, and that it 

eventually spread out to cover the rest of the country during the following thirty years.  The 

estimates of the Halfway points in Figure 2 range from the mid and late 1960s in the 

“pioneer” microregions of the South and Southeast to 2002 when what appears to be the 

last transition was estimated to reach its midpoint in a remote municipality of the Amazon 

(Novo Olinda do Norte in the state of Amazonas).   

 The estimates of Beta shown in Figure 3 exhibit an inverse pattern with the slowest 

transitions found in the South and Southeast, and the fastest in the North and Northeast.  

Apparently, there was a tendency for transitions to be faster in the same regions where they 

were longest in coming.   The estimates of Fpre and Fpost shown in Figures 4 and 5 present 

substantial regional differences in the range of the transitions, indicating that the fertility 

transitions would both begin and end at lower levels in the South and Southeast than in the 

North and Northeast.   

 To examine the influence of period on these transitions more directly, we have 

presented aspects of the distribution of Fpre, Fpost, and Beta (10th percentile, median, and 

90th percentile) in tables in which the transitions are categorized according to the period in 

which they began (Table 1) or were centered (Table 2).  These distributions while clearly 

showing substantial variation within a given range of start years or halfway-points, also 

show substantial shifts through time.  Earlier transitions have, on average, lower levels of 

fertility at the onset of the transition, and later transitions are, on average, faster.  The latter 

is especially pronounced in the classification by start date.   
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Goodness of Fit 

 We picked the logistic function to model the time series of TFRs in a microregion 

because of its correspondence with a stylized conception of the demographic transition, and 

because it offered a clear handle on both the timing and pace of the transition, as well as 

“forecasts” of its beginning and end points.  But the real world may not be so well behaved, 

especially in the presence of economic cycles of boom and bust, hyperinflation, rapid 

cultural change, and shifts in the availability of methods of contraception and abortion.   

Thus, we while we hoped the model would fit the data reasonably well; we expected to find 

some deviations beyond those that might be expected to result from the non-neglible 

sampling variation present in the estimates for places with relatively small populations.   

Moreover, we hoped that this process of holding the data up to a standard might prove to be 

a useful means of identifying unusual patterns of fertility change.   

 Our first approach to assessing goodness of fit was to examine both absolute and 

relative differences between the data points (the estimated TFR derived from the census of 

the same year) and the point on the estimated logistic curve at the corresponding point in 

time.  For this purpose, we ordered the deviations by size within the five major regions of 

the country, and displayed them in a graph for each census year.   The absolute and relative 

deviations are shown in Figure 7, where there is a plot for each census year, and within 

each plot, the differences are ordered by region, and within region by the size and direction 

of the difference.   This is a vast amount of information, and is indicative of the interplay 

between regions brought about by the Bayesian smoothing, sampling variation “noise”, as 

well as deviations resulting from a mismatch between the logistic curve and reality.  While 

we hope to have more to say about these deviations in later versions of this analysis, at the 

moment, we do not have an explanation for what is undoubtedly the most striking aspect of 

these plots:  the comparatively small size of the deviations found in 1991.   

 The second thing we did was to examine the residuals for each microregion by way 

of individual plots showing the fitted and observed points, as well the estimated values of 

Fpre, Fpost, and the Halfway point of the transition.  We have shown four such plots in 

Figure 8.  The cases were selected by inspection as being representative of three different 

types of fit.  The first plot is for the microregion containing the city of Porto Alegre, Rio 
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Grande do Sul, as well as some surrounding municipalities, and it shows that smoothing has 

pulled up the estimates for 1970 and especially 1960 to be above the very low levels 

observed in the census data.  We see no reason to believe these fitted estimates, nor to trust 

the estimates of Fpre, or the estimated dates for the halfway point or start (1945) for this 

particular transition.  While Porto Alegre provides an extreme example, many of the 

“pioneer” microregions selected for Figure 6 based on the observed level of fertility in 1960 

also present problems with fit.   

 The second plot is for Aracatuba in the state of Sao Paulo.  In this case, by the year 

2000, the fitted curve has flattened out at a level that is about 11 percent higher than the 

observed rate, and there is an offsetting deviation in 1980 when the observed value of the 

TFR is above the fitted rate.  Here fertility seems to be declining along a path that might 

lead to a floor around 1.5 or 1.6, and the logistic function plus smoothing provides what 

would seem to be a weak, probably biased grip on the far end of the transition.   

 The third selected microregion is Chapada dos Veadeiros in the Central West state 

of Goiás.  This place had a very small population in 1960, and had less than 2,000 women 

of reproductive age in the 2000 census sample.  Here, the deviations are substantial and in 

varying directions, but there is no reason to suspect that the model is not doing a good job 

of estimating reality. The fourth and last plot, for Brasileia in the state of Acre, is 

representative of the large majority of microregions in that it shows a good fit, and gives us 

no indication that the model does not correspond with the true path of fertility.   

The Association of Timing and Pace of Decline with Development Indicators 

Our primary motivation for obtaining estimates of parameters that would 

characterize the timing and speed of this set of “local” fertility transitions was to see how 

well they corresponded to some of the main hypotheses or stylized facts regarding fertility 

transitions.   Here the main issue has been whether the transition is best viewed as: 1) an 

adaptation to changing social and economic conditions, as the original theorists of the 

demographic transition would have it; or, alternatively, 2) controlled fertility mostly 

represents a behavioral innovation that spreads by way of social interactions through 

different regions and strata of the population, in large part, independently of social and 

economic conditions.  As of the present moment, the consensus is that the second 
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interpretation more closely corresponds with the historical evidence available from the 

countries that were included in the European Fertility Project, as well as the large mass of 

information that has been assembled on the fertility transitions that have taken place in 

developing countries since WW II.   

One of the most cited and persuasive overviews of these questions (Bongaarts and 

Watkins 1996) included an analysis of the experience of 69 developing countries between 

1960 and 1990.  Their questions and analysis would seem to apply with equal or greater 

force to the transitions experienced by local areas within countries.  Thus, as a starting 

point for our own analysis, we have selected several of their main findings to see if they are 

consistent with the transitions we observe and assess in Brazilian microregions.  The first of 

these is that development threshold for the onset of fertility fall through time, presumably 

as a result of the influence of the example of other countries in the same region that have 

already begun the transition in fertility.   The question in our case is whether the level of 

development at the start of the transition fell through time as the fertility decline spread out 

from a minority of places in the South and Southeast of Brazil to the rest of the country.   

To address this question, we chose four indicators:  the average number of years of 

education attained by women 15-49 in a microregion; the proportion of persons in the labor 

force whose occupation was in the primary sector; the proportion of households located in 

urban areas; and the proportion of households which had electricity.  For transitions 

beginning after 1960, we estimated the level of the corresponding indicator at the start year 

by way of a linear interpolation of the values registered in the respective census years.  The 

distribution of these indicators for the transitions starting in successive five year periods is 

shown in Table 3.  Here, there appears to be a difference between the indicators for the 

transitions beginning in the first period, 1960-1964, and those for the later transitions.  The 

indicators at the start of the transitions in this first group show a slightly higher level of 

educational attainment, a smaller primary sector, and noticeably more urbanization and 

electrification.  However, from 1965 onwards, no consistent trend is apparent.  There is a 

gradual increase in the average levels of education and electrification, but, on the other 

hand, there is an increase in the proportion of people employed in the primary sector and a 

decrease in urbanization.   
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An intriguing question that we are not yet in a position to answer fully concerns the 

level of development of the 62 microregions that began their transitions before 1960.  

Looking at their indicators for 1960 (not shown) they clearly were better off than those in 

which the onset occurred afterwards.  However, we will need to piece together what we can 

with respect to the relevant indicators from published tabulations from the 1940 and 1950 

censuses to get a better grip on the levels at the estimated time of onset.  Indeed, it will also 

be interesting to see how much we can learn from the published data regarding the level of 

the TFR in these earlier censuses since we have reason to suspect that our estimates of both 

the start date and Fpre may be quite unreliable for these “pioneers”.   Parenthetically, to 

provide a picture of just where this early low fertility was located we prepared a map 

(Figure 6) showing the level of fertility and location of all the microregions for which we 

had data with a TFR below 4.5 in 1960.   

If we shift our focus from the onset point to looking at “how far along” in their 

transitions local areas were at different levels of development, and then comparing across 

censuses, a secular shift becomes apparent.  For this purpose, we chose the two indicators 

that our earlier analysis (Potter, Schmertmann, and Cavenaghi 2002) had identified as being 

most closely associated with the level of fertility in a fixed-effects model.  In Table 4, we 

show the median level of “completeness” of the transition among microregions cross-

classified according both education and electrification in the respective censuses.   At any 

joint level of development, the median transition level shifts upwards as one moves from 

earlier to more recent censuses.  Of course, some of this shift is due to a shifting 

composition within cells, but certainly not all of it.   

The second major finding in the Bongaarts and Watkins (1996) study that we would 

like to address with our Brazilian data concerns the relationship between the pace of the 

fertility transition and development.  Their conclusion is that the pace of the transition is 

unrelated to the speed with which development indicators change during the transition.  

However, they find that pace is related to the level of development at the start of transition, 

as well as time elapsed since another country in the same region entered the transition.  We 

have argued that our own results from estimating a fixed-effects model (Potter, 

Schmertmann, and Cavenaghi 2002) contradict the first of these conclusions.  While we 



 13

could examine the association between our Beta parameter and change in development 

indicators, we suspect that doing so would not add much to the previous analysis.   

One issue that we can address here, however, is the finding that pace is related to the 

level of development at the time of onset as well as time elapsed since other places in the 

region entered the transition.   To that end, we ran a simple, unweighted OLS regression 

with Beta as the dependent variable, and our estimates of the level of development at the 

time of onset as well as the date of the halfway point of the transition as the predictors.  The 

estimated coefficients and significance levels are shown in Table 5.  These results show 

that the level of education at onset was inversely associated with the speed of the transition, 

while a later halfway point and higher electrification at onset were positively associated 

with pace.   The estimated effect of the timing of the transition is consistent with our earlier 

examination of the shifts in our parameters through time (Table 2), as well as with the 

results for developing country transitions.  However, the evidence that the level of 

development at onset influences the pace of decline seems to differ from the Bongaarts and 

Watkins (1996) results.   

 

4.  Discussion 

 As the annual meeting approaches, we have not yet fully digested the results 

presented here.  Nevertheless, we are pleased with them.  The logistic model seems to fit 

the bulk (about 80%) of the 502 transitions quite well, and provides a clear picture of when 

and at what TFR the transitions began, when and at what TFR they will end, and how fast 

they were.  There is a lot to indicate that local transitions in Brazil have not and will not 

stall at levels far above replacement.  Similarly, in most cases, it seems that fertility well 

below replacement is not an immediate concern.   

 The analysis has also served to draw our attention toward a minority of cases where 

the model does not seem to yield reliable or fully believable results.   These cases are of 

two types.  The first group consists of the pioneer microregions in which fertility was 

already quite low in 1960.  It seems that in these places, there may have been a relatively 

long and slow decline that took place over a length of time that we cannot know or do not 

yet know.  It seems to us that unlikely that such slow then faster transitions can or should 



 14

be forced into the logistic mold, and that they are worthy of more attention than they have 

received so far.  The second group consists of those places where there are strong 

indications that the transition is not going to level off at the estimated value of Fpost, and 

the TFR has either reached or seems likely to reach a value below 1.8.  Again, these 

transitions seem to warrant further attention once we develop a good means of identifying 

them.   In particular, it would be to know if there is anything about their socioeconomic 

trajectory that is different from the others.   

 Apart from the adequacy of the logistic model, both of these outlying groups show 

the weaknesses as well as the strengths of the Bayesian methodology that we have adopted.  

We use it because it helps us with both sampling variation, and the limited number of 

observations for each individual transition, as well as the large time interval between 

observations.  “Borrowing strength from neighbors” seems to work most but certainly not 

all of the time.  We need to spend some time thinking about how to further evaluate and 

explain the magic that WinBUGS has wrought.   

 With regard to the long-standing but now quite subdued debate concerning 

innovation versus adjustment perspectives on the fertility transition, we believe our 

modeling and analysis has something to add.  The results presented here would seem to fall 

in between the extreme positions.  There is no doubt that later transitions are faster, and the 

existence and example of the earlier transitions must have had some influence on the later 

transitions.  However, the threshold for the onset of the fertility transition seems to have 

been remarkably stable, at least after 1965.  Indeed, the fact that we have identified a 

relatively large number of places with low fertility in 1960 that may have had low fertility 

coupled with high development indicators for what may have been quite a long period 

raises an interesting question.  Why did it take so long for others to follow their example 

and pick up on this innovative behavior?  Further work with dusty census volumes as well 

as the microdata will have to be done, but perhaps the experience of the pioneer local 

regions will pose a fairly severe challenge to the innovation perspective.   

Finally, there are clearly a number of ways that this type of analysis could be 

extended.  One which we have long had in mind but have not yet implemented is to 

incorporate a logistic curve for mortality, and tie it to the curve for fertility.  In addition to 
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incorporating mortality, we envision two modeling approaches that could overcome the 

disjuncture in our current analysis between “smoothed” estimates of the fertility 

parameters, and “raw” estimates of the development covariates.  In the first, after obtaining 

a point estimate, the posterior mean, for each parameter (β1,...,βN), (τ1,...,τN), we could then 

use these estimates as inputs to a second stage, in which we analyze how a microregion’s 

transition path (βi,τi) is related to its socioeconomic conditions.   

Another possibility is to introduce a hierarchical structure in the Bayesian 

framework allowing the parameters to be both spatially correlated and dependent on 

covariate values.  Hence, the covariates affect the demographic processes through the 

parameters controlling the timing and speed of the transition.  A general model would be 

similar to one which puts  

ikikii XX εγγγβ ++++= ...110  

where εi follows a spatial autoregressive or similar distribution. Possibly, different 

covariate subsets could explain different parameters.  That is, the covariates explaining the 

speed transition do not have to be the same as those explaining the transition timing, 

especially in terms of their location in time, and levels versus differences.  Proceeding in 

this way, would lead to a highly structured model, with several hierarchical levels, but with 

interpretable parameters with possibly great explanatory power.   
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Figure 1 – Estimates of Start Year 
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Figure 2 – Estimates of Halfway Point 
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Figure 3 – Estimates of Beta 
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Figure 4 – Estimates of Fpre 
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Figure 5 – Estimates of Fpost 
 
 
 

N

Fpost
1.9 - 2
2 - 2.05
2.05 - 2.2
2.2 - 2.25
2.25 - 2.35
2.35 - 2.43

States

1000 0 1000 Kilometers



Figure 6  -- Places with TFR less than 4.5 in 1960 (unadjusted Census estimates). 
 

 



Figure 7.  Plots of Absolute and Relative Differences, by Region and Census Year 
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Fitted TFR minus observed TFR - 2000
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Figure 8.  Plots for Selected Microregions 
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10% 50% 90% 10% 50% 90% 10% 50% 90%

1950 - 1954 
(n=17) 4.93 5.55 6.27 2.06 2.20 2.23 -0.14 -0.12 -0.10

1955 - 1959 
(=45) 4.56 5.35 6.70 1.99 2.07 2.21 -0.15 -0.13 -0.12

1960 - 1964 
(n=90) 4.80 5.83 7.18 1.97 2.04 2.21 -0.18 -0.15 -0.13

1965 - 1969 
(n=87) 5.22 6.34 7.56 1.98 2.10 2.31 -0.20 -0.16 -0.14

1970 - 1974 
(n=66) 5.46 6.60 7.65 2.07 2.21 2.34 -0.23 -0.17 -0.15

1975 - 1979 
(n=106) 6.04 6.76 7.60 2.10 2.26 2.33 -0.22 -0.20 -0.16

1980 - 1984 
(n=66) 6.00 6.70 7.47 2.13 2.26 2.34 -0.23 -0.20 -0.17

1985 + 
(n=25) 6.04 6.67 7.60 2.24 2.31 2.34 -0.27 -0.24 -0.20

 Table 1.  Distribution of Estimates of Fpre, Fpost, and Beta, by Estimated Start Year

Start
Fpre Fpost Beta



10% 50% 90% 10% 50% 90% 10% 50% 90%

1965 - 1969 
(n=14) 4.93 5.47 5.93 2.06 2.18 2.23 -0.14 -0.12 -0.11

1970 - 1974 
(=32) 4.60 5.64 6.94 1.96 2.05 2.22 -0.17 -0.15 -0.13

1975 - 1979 
(n=129) 4.70 5.78 7.18 2.00 2.06 2.23 -0.20 -0.15 -0.13

1980 - 1984 
(n=95) 5.08 6.30 7.48 2.02 2.13 2.33 -0.21 -0.16 -0.13

1985 - 1989 
(n=105) 5.73 6.78 7.60 2.09 2.24 2.33 -0.23 -0.18 -0.15

1990 - 1994 
(n=100) 6.00 6.78 7.66 2.13 2.28 2.35 -0.23 -0.20 -0.16

1995 + 
(n=27) 5.97 6.78 7.64 2.17 2.32 2.35 -0.27 -0.23 -0.18

 Table 2.  Distribution of Estimates of Fpre, Fpost, and Beta, by Estimated Year of Halfway Point

Halfway 
Year 

Fpre Fpost Beta



10% 50% 90% 10% 50% 90% 10% 50% 90% 10% 50% 90%
1960 - 1964 
(n=73) 1.83 2.20 3.03 23.95 60.10 72.80 0.33 0.44 0.73 23.61 39.22 68.20

1965 - 1979 
(n=78) 1.30 1.91 3.05 19.80 69.91 84.88 0.21 0.36 0.74 7.50 21.24 58.70

1971 - 1974 
(=66) 1.23 1.92 3.44 22.86 66.15 84.35 0.22 0.36 0.74 10.00 19.10 55.73

1975 - 1979 
(n=106) 1.34 2.00 2.87 48.63 67.45 81.25 0.23 0.37 0.55 14.75 24.25 39.60

1980 - 1984 
(n=66) 1.45 2.23 2.95 59.62 70.88 79.85 0.19 0.33 0.47 16.93 26.63 38.65

1985 + 
(n=25) 1.95 2.54 3.26 61.66 73.34 81.56 2.00 0.30 0.44 23.30 29.62 39.13

Table 3.  Distribution of Estimates Development Indicators, by Estimated Start Year

Start
Women's Education Primary Sector Urban Electrification



Mean Educ
1960 (0,20] (20,40] (40,60] (60,80] (80,100]
(0,2] 1 4 7 - -
(2,4] 7 10 8 10 8
(4,6] - - - - 41
(6,8] - - - - -
(8,10] - - - - -
1970
(0,2] 2 4 4 - -
(2,4] 8 23 28 31 27
(4,6] - 4 60 28 32
(6,8] - - - - -
(8,10] - - - - -
1980
(0,2] 8 11 - - -
(2,4] 8 19 38 50 36
(4,6] - - 61 63 66
(6,8] - - ` 61 81
(8,10] - - - - -
1991
(0,2] - 39 42 - -
(2,4] - 37 50 59 54
(4,6] - - 58 75 88
(6,8] - - - - 93
(8,10] - - - - -
2000
(0,2] - - - - -
(2,4] - - 75 76 86
(4,6] - - 87 85 90
(6,8] - - - 87 97
(8,10] - - - - 98

Table 4.  Median Transition Level among Microregions, by 
Level of Education and Electrification

% Electrification



Women's Education -0.01820 0.000
Primary Sector 0.00005 0.795
Urban -0.00676 0.746
Electrification 0.00063 0.000
Halfway Point -0.00219 0.000
Constant 4.18370 0.000

R2 0.281

Beta P > |T|Coefficient

Table 5. OLS Model for Beta regressed on indicators of 
development at onset and the halfway point date




