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Abstract

A rapidly aging population, such as the United States today, is characterized by the in-
creased prevalence of chronic impairment, especially pronounced among the elderly. An impor-
tant question is whether additional years of life are spent in poor health. Robust estimation
of disability-free life expectancy (DFLE) is essential for addressing this question. Thirty years
after publication, Sullivan’s method still remains the most widely used method for estimating
DFLE when large-scale longitudinal data are not available. Sullivan’s method simply partitions
the total number of person-years lived in a given age interval by the proportion disabled in
that interval. We prove that in doing so Sullivan’s method imposes a previously unnoticed
assumption. To improve upon Sullivan’s method, we relax this assumption and derive the non-
parametric bounds of DFLE. A bootstrap method is used to compute the balanced confidence
intervals for the bounds. It is also possible to improve these bounds by incorporating additional
assumptions that are theoretically credible. We identify such assumptions and show that under
these conditions Sullivan’s method is likely to underestimate the DFLE. Finally, we apply the
proposed methodology to estimate DFLE for the 1999 United States population using the data
from the period life table, the National Health Interview Survey, and the National Nursing
Home Survey. We find important race, sex, and education differentials in DFLE and proportion
of remaining life spent without disability.
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1 Introduction

A rapidly aging population, such as the United States today, is characterized by the increased

prevalence of chronic impairment, especially pronounced among the elderly. An important question

is whether additional years of life are spent in poor health. Robust estimation of disability-free life

expectancy (DFLE) is essential for addressing this question because DFLE represents the expected

number of years of disability-free life a member of the life table cohort would experience if current

age-specific rates of mortality and disability prevailed throughout the cohort’s lifetime.

In his seminal paper, Sullivan (1971) developed a method for combining mortality and morbidity

rates into a single summary measure of a population’s health status. Over thirty years after

publication, Sullivan’s method remains the most widely used method for estimating DFLE when

large-scale longitudinal data are not available. The key idea of the method is to combine the period

life table with age-specific disability prevalence from survey data to estimate DFLE. In particular,

Sullivan’s method simply partitions the total number of person-years lived in a given age interval,

which is obtained from the life table, into the disabled and disability-free life expectancy based on

the proportion disabled in that interval, which is measured from the disability survey.

Sullivan’s method is of prime methodological importance in the ongoing exploration of morbid-

ity (e.g., Crimmins et al., 1989, 1997). It has been used extensively to estimate DFLE in various

populations (e.g., Iburg et al., 2001) as well as differences in DFLE by socioeconomic status (e.g.,

Molla et al., 2004; Sihvonen et al., 1998), educational levels (e.g., Minicuci, 2004), occupational

groups (e.g., Bronnum-Hansen, 2000), and between time periods (e.g., Graham et al., 2004; Crim-

mins et al., 1989; Bronnum-Hansen et al., 2004). The method has also been used to estimate the

burden of disease from chronic conditions such as diabetes (e.g., Manuel and Schultz, 2004) and the

contribution of specific diseases to educational disparities in DFLE (e.g., Nusselder et al., 2005).

Nusselder and Looman (2004) analyzed the contribution of various causes of death and disability
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to differences in health expectany among populations and over time. Murray and Lopez (1996)

compared the disability-adjusted life expectancy, which is a quantity closely related to DFLE,

across world regions using Sullivan’s method as part of the Global Burden of Disease Study. In

addition to academic researchers, a number of governments and international health organizations

employ Sullivan’s method. The United States (U.S.) National Center for Health Statitics uses

Sullivan’s method to compute health expectancy as part of the Healthy People 2010 Study (Molla

et al., 2003). The Australian Institute of Health and Welfare also used Sullivan’s method in its

1996 Burden of Disease study (Mathers et al., 2001). The World Health Organization also used

the method to estimate disability-adjusted life expectancy for 191 member states (Musgrove et al.,

2000).

Robust estimation of DFLE is also vital to the theoretical understanding of morbidity. The

existing research on DFLE of various populations and time periods has often reached contradictory

conclusions regarding the competing nature of mortality and morbidity. For example, Gruenberg

(1977) and Kramer (1980) argue that the decline in mortality rates only reflects a decline in the

fatality rate of chronic diseases rather than a decline in their incidence. Greater life expectancy will

result in more severe chronic diseases. Fries (1980), on the other hand, argues for the compression

of morbidity. If the onset of the chronic condition can be postponed and adult life expectancy is

relatively constant, morbidity will be compressed into a shorter period of time. Moreover, Manton

(1982) offers an alternative theory of dynamic equilibrium in which the decline in mortality leads

to an increase in the prevalence of milder chronic diseases. Therefore, the accurate estimation of

DFLE is essential for the empirical evaluation of these competing theories.

In this paper, we identify the previously unnoticed assumption of Sullivan’s method and propose

an alternative nonparametric method that avoids such an assumption. In Section 2, we prove

that Sullivan’s method imposes an assumption about the conditional probability of death and
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the average number of person-years lived among those who will die within each age interval. In

Section 3, we relax this assumption and derive nonparametric bounds for DFLE. We use bootstrap

to compute the balanced confidence intervals for the nonparametric bounds. We also show how

to improve these bounds by incorporating additional assumptions that are theoretically credible.

In particular, the age-specific conditional probability of death is often significantly higher for the

disabled than for the disability-free. Another plausible assumption is that the frailer are more

likely to die earlier within a given age interval. We show that under these assumptions, Sullivan’s

method is likely to underestimate the DFLE. In Section 4, we apply our proposed methodology to

estimate DFLE for the 1999 U.S. population using the data from the period life table, the National

Health Interview Survey, and the National Nursing Home Survey. We find important race, sex,

and education differentials in DFLE and proportion of remaining life spent without disability. In

Section 5, we present conclusions.

2 Sullivan’s Method Revisited

Sullivan’s method utilizes the mortality data from a period life table and the disability prevalence

data from a cross-sectional survey. Of course, when longitudinal data are available, DFLE is

best modeled by a multi-state life table, which follows a specific cohort and provides the detailed

information about each individual’s transitions between the disability-free and disabled status and

from each status to death over time (e.g., Rogers et al., 1989; Robine et al., 1995). Yet, multi-state

life table methodology is often difficult to implement because of considerable data requirements

(Mathers and Robine, 1993). Sullivan’s method continues to be widely used to estimate DFLE

because of the inherent difficulty in collecting large-scale longitudinal data. In contrast, the life

table mortality data and various large-scale cross-sectional disability surveys are publicly available.

In this section, we first introduce the standard notation of the period life table used in the field

of demography (e.g., Chiang, 1984; Preston et al., 2001) and define the estimand, DFLE. We then
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derive the key assumption of Sullivan’s method.

2.1 Period Life Table and Life Expectancy

A main purpose of period life tables is to calculate the life expectancy of a hypothetical cohort

that experiences the same cross-sectional mortality rates during a particular period. In general, the

construction of period life tables assumes the stationarity of the population during that period. Let

x represent the age at the start of an age group interval. Period life tables assume discrete time,

and are typically measured by years. In this paper, we first consider unabridged period life tables

where the length of age group interval is one year. As discussed in Section 3.4, the estimation of

DFLE using abridged period life tables where the interval length is two years or longer is possible

but requires stronger assumptions.

Period life tables are created by first observing the mid-year population, Px, and the total

number of deaths, Dx, for each interval starting at age x = 0, 1, 2, . . . , ω, where ω is the oldest age

observed. The observed mortality rate Mx for each interval is calculated as the ratio of Dx and

Px, i.e., Mx = Dx/Px. Given the stationarity assumption and the fact that Px and Dx are directly

obtained from the Census data, the mortality rate of the hypothetical cohort mx is assumed to

equal the observed mortality rate of the population Mx without sampling variability. Then, it can

be shown that the conditional probability of death qx is equal to mx/[1 + (1 − ax)mx] where ax

(0 < ax < 1) is the average person-years lived in the interval [x, x + 1) among those who are alive

at age x but die in the interval. Although period life tables are based on discrete time, the values

of ax are often obtained from the complete life tables and used in subsequent calculations as a

known quantity (e.g., Preston et al., 2001; Molla et al., 2001).

Given qx and the known value of l0, which represents the total number alive at age 0, we

can derive the remainder of the life table. First, the number of survivors at age x is sequentially

defined as lx+1 = (1− qx)lx for each x = 0, 1, . . . , ω. If l0 is set to 1, then lx represents the survival
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Age lx qx ax Lx ex

20 0.986 0.001 0.506 0.986 55.693
25 0.982 0.001 0.500 0.981 50.943
30 0.977 0.001 0.495 0.976 46.179
35 0.971 0.001 0.500 0.970 41.437
40 0.963 0.002 0.500 0.962 36.754
45 0.952 0.003 0.500 0.950 32.160
50 0.935 0.004 0.500 0.933 27.686
55 0.911 0.007 0.499 0.908 23.345
60 0.875 0.011 0.501 0.870 19.213
65 0.820 0.016 0.500 0.813 15.310
70 0.743 0.025 0.500 0.733 11.629
75 0.638 0.038 0.500 0.626 8.112
80 0.505 0.059 0.500 0.490 4.565
85 0.345 1.000 0.500 0.328 0.500

Table 1: 1999 U.S. Period Life Table and Life Expectancy for Selected Ages. The period life table
is created from the conditional probability of death, qx, and the average person-years lived in the
age interval by those dying in the interval, ax. lx is the proportion of survivors at age x, whereas
Lx represents the total number of person-years lived within the age interval [x, x+1) for those who
were alive at age x. The final column gives the life expectancy ex at each age.

probability at age x. Next, the total number of person-years lived within the age interval [x, x+1)

among those who are alive at age x is given by,

Lx ≡ (1− qx)lx + dx ax, (1)

= lx[1 + qx(ax − 1)], (2)

where dx represents the number of death in the age interval [x, x + 1), i.e., dx ≡ lx − lx+1 = lx qx.

Each of those who do not die within the age interval [x, x+1) contributes one person-year and each

of those who die within the interval contributes ax person-years on average. Finally, by adding

the total number of person-years for the subsequent age intervals, the life expectancy at age x is

defined as,

ex ≡ 1
lx

ω∑
i=x

Li. (3)

Table 1 shows the 1999 U.S. unabridged period life table for selected ages (Arias, 2002). The

radix, l0, is set at 1.0 (not shown) so that lx represents the survival probability. At age 25 years,
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98.2% of the hypothetical life table cohort remains. From age 25 to ω, the remaining 98.2% of the

cohort will live
∑ω

i=25 Li = 50.0 person-years. Hence, a 25 year-old member of the hypothetical

cohort will live, on average, ex = 50.9 years given he or she experiences the prevailing period

age-specific conditional probabilities of death. See Section 4 for a comprehensive analysis of the

1999 U.S. population.

2.2 Defining Disability-Free Life Expectancy (DFLE)

In a manner completely analogous to the derivation of the overall life table developed in Section 2.1,

a disability-free life table may be constructed from the age-specific disability prevalence at age x,

denoted by πx, and the period life table. For any age x, the total number of disability-free persons

starting the age interval is defined as,

lDF
x ≡ (1− πx)lx. (4)

Analogous to equation 2, the person-years lived disability-free in the interval [x, x + 1) is given by,

LDF
x ≡ (1− qDF

x )lDF
x + dDF

x aDF
x , (5)

= (1− πx)lx
[
1 + qDF

x (aDF
x − 1)

]
, (6)

where dDF
x represents the number of deaths among the disability-free in the given age interval,

i.e., dDF
x = lDF

x qDF
x . Each disability-free survivor contributes one person-year while those who

die contribute aDF
x person-years. While lx+1 = (1 − qx)lx holds for the overall population, the

equation does not necessarily hold for the disability-free population, i.e., lDF
x+1 6= (1 − qDF

x )lDF
x .

This is because some previously healthy people transition to the disabled state at the beginning

of the next age interval and vice versa. It is assumed that such transitions do not occur during

age intervals. While ax and qx are best measured separately for the disabled and disability-free

populations, this is often not the case. The life table gives qx for each x but does not give qDF
x .

Similarly, in most cases aDF
x is not directly observed and only ax is observed.
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The estimand DFLE can now be defined as,

eDF
x ≡ 1

lx

ω∑
i=x

LDF
i . (7)

DFLE can be interpreted as the expected number of years of disability-free life a member of the

life table cohort would experience if current age-specific rates of mortality and disability prevailed

throughout the cohort’s lifetime. Finally, the same argument can be repeated to construct the life

table for the disabled population, which is of less interest to researchers than the disability-free

population. We use the superscript D to denote the same quantities for the disabled population

(e.g., qD
x and aD

x ).

2.3 Sullivan’s Method

Sullivan’s estimator of DFLE is found by partitioning the person-years lived in the age interval into

the proportion with and without disability based on the disability prevalence. Within each age

interval, the number of person-years lived is simply multiplied by the fraction of the disability-free

at the beginning of the interval. Specifically, Sullivan’s estimator of eDF
x is defined by,

êDF
x ≡ 1

lx

ω∑
i=x

(1− πi) Li (8)

where πi is ordinarily estimated using the sample average of the disability prevalence within each

age group i of the cross-sectional survey data.

A common way to obtain the variance of Sullivan’s estimator is to assume that the total number

of the disabled within each age interval follows an independent binomial process (e.g., Mathers,

1991; Montpellier, 1997; Molla et al., 2001). Given this assumption, if πi is being estimated using

the sample average, then the variance of Sullivan’s estimator is equal to,

Var
(
êDF
x

)
=

1
l2x

ω∑
i=x

πi (1− πi) L2
i

Ni
, (9)

where Ni represents the total number of survey respondents within the age group [x, x + i). This
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variance is then estimated by substituting the sample average of the disability prevalence for each

i obtained from the disability survey data.

2.4 The Key Assumption of Sullivan’s Method

The following proposition shows that Sullivan’s method relies on a key assumption concerning the

relationship between the conditional probability of death and the average person-years lived within

a given interval among those who die in the interval.

Proposition 1 Sullivan’s method consistently estimates the disability-free life expectancy at every

age if and only if qx(ax − 1) = qD
x (aD

x − 1) = qDF
x (aDF

x − 1) for all x = 0, 1, 2, . . . , ω.

The proof is given in Appendix. The proposition implies that in order for the Sullivan’s estimator

to be consistent for every age group, the equality qx(ax − 1) = qD
x (aD

x − 1) = qDF
x (aDF

x − 1) must

hold for all x. First, if qDF
x = qD

x and aDF
x = aD

x , then the condition is satisfied. This amounts to

the assumption that the disabled die at the same rate as the disability-free population throughout

the cohort’s lifetime. Second, although by definition ax, aDF
x , and aD

x are strictly less than 1 and

empirically they are never equal to 1, it is important to note a limiting case ax = aDF
x = aD

x = 1

where the equality, qx(ax − 1) = qD
x (aD

x − 1) = qDF
x (aDF

x − 1), is satisfied regardless of the value

of qx, qDF
x , and qD

x . In this case, everyone dies only at the beginning of age interval, and the

mortality rate mx equals the conditional probability of death qx. Then, it follows that Lx = lx and

LDF
x = (1− πx)Lx, which imply the consistency of Sullivan’s estimator. Finally, it can be readily

seen that in continuous time, Sullivan’s estimator directly corresponds to DFLE, via the identity∫∞
x lDF

t dt =
∫∞
x (1− πt) lt dt, which follows directly from equation 4.

3 Methodology

In this section, we propose a nonparametric method that improves upon Sullivan’s method. Our

goal is to estimate DFLE without making the assumption identified in the previous section. To do
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this, we apply the method of bounds. This method has been employed in many areas of statistics,

including causal inference (e.g., Manski, 1990; Balke and Pearl, 1997; Robins, 1989), ecological

inference (e.g., Duncan and Davis, 1953), retrospective sampling (e.g., King and Zeng, 2002), and

missing data (e.g., Horowitz and Manski, 1998), where due to the limitation of data availability,

strong and often controversial assumptions are invoked. In such situations, the method of bounds

is particularly attractive because it illuminates how informative the data alone are about quantities

of interest, thereby separating the issue of identification from that of estimation (see Manski, 2003,

for a comprehensive monograph).

3.1 Nonparametric Bounds of DFLE

Proposition 1 in Section 2.4 shows that Sullivan’s estimator point identifies eDF
x by assuming

qDF
x (aDF

x − 1) = qD
x (aD

x − 1) = qx(ax− 1). Here, we avoid this assumption and derive the nonpara-

metric bounds of DFLE. The following proposition gives the upper and lower bounds of DFLE.

These bounds are sharp, i.e., they cannot be made narrower without imposing an additional as-

sumption.

Proposition 2 For each age group x = 1, 2, . . . , ω, the sharp upper and lower bounds of DFLE

are given by,

BU
x =

1
lx

ω∑
i=x

(1− πi) li min
[
1,

qi(ai − 1) + 1
1− πi

]
, (10)

BL
x =

1
lx

ω∑
i=x

(1− πi) li max
[
0,

qi(ai − 1)
1− πi

+ 1
]

, (11)

respectively.

The proof is given in Appendix. Note that given an age group i if πi ≥ qi(1 − ai), which is

likely because qi tends to be much smaller than πi, then min
[
1, qi(ai−1)+1

1−πi

]
= 1. Similarly, if

πi ≥ 1− qi(1− ai), which is unlikely for the same reason, max
[
0, qi(ai−1)

1−πi
+ 1

]
= 0.
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The lower and upper bounds, BU and BL, can then be consistently estimated by substituting

the consistent estimate of πx from the disability survey data, since the only unknown quantity in

the expressions of the bounds is the prevalence of disability. The consistent estimate of πx can

be easily obtained from the survey data, for example, by computing the weighted average of the

disability indicator variable within each age group. An alternative and perhaps more appropriate

estimation strategy, when estimating the disability prevalence of a hypothetical cohort from a

cross-sectional dataset, is to model the disability prevalence as a smooth function of age and use a

nonparametric regression.

The length of the bounds BU
x −BL

x depends on the observed values of ai, qi, and πi for i = x, x+

1, . . . , ω as well as lx. Here, we consider how the quantity directly related to the informativeness

of the bounds of DFLE, (1−πi)
{

min
[
1, qi(ai−1)+1

1−πi

]
−max

[
0, qi(ai−1)

1−πi
+ 1

]}
, varies as a function

of qi and πi for a particular age group i (ai is set to 0.5). The left panel of Figure 1 presents this

quantity as a function of qi and πi using a level plot where darker shades represent smaller values of

this quantity, thereby implying narrower and more informative bounds of DFLE. The plot shows

that the bounds tend to be informative when qx and πx are small. The plot also presents the

actual mortality and estimated disability prevalence for ages 25 to 85 of the 1999 U.S. population

as solid circles using the data from the period life table (see Table 1), the National Health Interview

Survey (NHIS), and the National Nursing Home Survey (NNHS) (See Section 4 for a comprehensive

description of these data and the definition of disability we use). The data are quite informative

about DFLE because qx and πx are generally small in this population, suggesting the method of

bounds may be useful for estimating DFLE.

3.2 Monotonicity Assumptions

It is straightforward to incorporate additional inequality (or monotonicity) assumptions into the

method of bounds while still avoiding the strong equality assumption of Sullivan’s method, i.e.,
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Figure 1: The Informativeness of the Nonparametric Bounds for DFLE as a Function of Disability
Prevalence, πi, and the Conditional Probability of Death, qi, Without Assumptions and With
Monotonicity Assumptions. The value of ai is set to 0.5 years. The plots show the quantity directly
related to the length of the bounds of DFLE, (1−πi)

{
min

[
1, qi(ai−1)+1

1−πi

]
−max

[
0, qi(ai−1)

1−πi
+ 1

]}
,

as a function of qi and πi. Darker shades represent smaller values of this quantity, thereby implying
narrower and more informative bounds of DFLE. The sold circles represent the actual mortality
and estimated disability prevalence for ages 25 to 85 of the 1999 U.S. population using the data
from the period life table, the National Health Interview Survey, and the National Nursing Home
Survey.

qDF
x (aDF

x − 1) = qD
x (aD

x − 1) = qx(ax − 1). In particular, we consider the assumptions qD
x ≥ qDF

x

and aD
x ≤ aDF

x for all x. This case is theoretically most likely among the four cases that exist

in the monotonic relationships between qDF
x and qD

x and between aDF
x and aD

x . The conditional

probability of death is assumed to be higher for the disabled population than the disability-free

population in each age group, i.e., qDF
x ≤ qD

x . It is theoretically plausible because the disabled are,

ceteris paribus, more likely to die. One can also assume that the life expectancy among those who

will die in the interval is less for the disabled population within each age interval, i.e., aDF
x ≥ aD

x .

Among those who will die in an interval, the disabled may do so sooner than the disability-free

because higher morbidity often corresponds to a higher hazard rate.

The following proposition shows the implications of the monotonicity assumptions specified
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above about the nonparametric bounds of DFLE.

Proposition 3 For a given age group x, under the assumption that qD
i ≥ qDF

i and aD
i ≤ aDF

i for

all i = x, x + 1, . . . , ω, the upper bound of eDF
x remains same as equation 10, whereas the lower

bound BL
x equals 1

lx

∑ω
i=x(1− πi)Li.

The proof is given in Appendix. The assumptions imply that the resulting lower bound for eDF
x

becomes greater, yielding more informative bounds than before. The new lower bound is equal to

Sullivan’s estimate of eDF
x , implying that if these assumptions are correct, Sullivan’s estimate is

likely to be biased downwards. Figure 1 illustrates the fact that with the monotonicity assumptions

(the right panel of the figure) the bounds are narrower and hence more informative than without

assumptions (the left panel). Figure also shows that even under the monotonicity assumptions, the

bounds are informative when qi and πi are small as it is the case in the absence of such assumptions.

3.3 Confidence Intervals

Since πx is estimated from the disability survey data, the resulting nonparametric bounds have

sampling variability. In general, there are several types of (1 − α)% confidence intervals that

can be constructed for nonparametric bounds (e.g., Cheng and Small, 2005). First, we consider

a simple approach based on the Bonferroni’s inequality. Let Yij represent the disability indicator

variable for the jth individual of the ith age group in the cross-sectional survey where j = 1, . . . , Ni.

We obtain the consistent (and unbiased) estimates of the nonparametric bounds, B̂L
x and B̂U

x , by

using, for example, the sample averages π̂i =
∑Ni

j=1 Yij/Ni to estimate πi for i = x, . . . , ω and

substituting them into equations 10 and 11. To obtain the (1 − α)% confidence interval for the

resulting bounds, we apply the Bonferroni’s inequality, Pr([BL
x , BU

x ] ⊂ [B̂L
xα, B̂U

xα]) ≥ Pr(BL
x ≥

B̂L
xα) + Pr(BU

x ≤ B̂U
xα) − 1 = 1 − α and find the upper and lower confidence bounds, denoted by

B̂U
xα and B̂L

xα, such that Pr(BL
x ≥ B̂L

xα) = Pr(BU
x ≤ B̂U

xα) = 1− α/2. Such values of B̂U
xα and B̂L

xα
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are obtained by consistently estimating the variance of the upper and lower bounds via,

Var(B̂U
x ) =

1
l2x

ω∑
i=x

σU
i l2i , and Var(B̂L

x ) =
1
l2x

ω∑
i=x

σL
i l2i , (12)

where σU
i is equal to Var(π̂i) if qi(1 − ai) < πi and is equal to 0 otherwise. Similarly, σL

i is equal

to Var(π̂i) if qi(ai − 1) + 1 < πi and is equal to 0 otherwise. For example, if sample averages are

used to estimate πi, then Var(π̂i) =
∑Ni

j=1(Yij − π̂i)2/[Ni(Ni − 1)]. Despite the ease of computing,

the drawback of this approach is that the coverage probability of the resulting confidence intervals

is often greater than 1− α, yielding wider confidence intervals than necessary.

To overcome this problem, we apply a general bootstrap method developed by Beran (1988)

to compute the balanced simultaneous confidence intervals with the exact coverage probability.

We can estimate πx using sample averages as before. Other estimators of πx can also be used in

conjunction with this bootstrap method. For example, we can nonparametrically estimate πx as a

smooth function of age from the disability survey data since we know theoretically that the disability

prevalence does not change rapidly from one age group to another. Unlike longitudinal data,

cross-sectional surveys often exhibit a high fluctuation in disability prevalence across age groups.

Hence, the smoothing technique may be appropriate for identifying the underlying functional form

of disability prevalence over time. Moreover, such an approach is desirable when age of survey

respondents is measured in months or days instead of years as done in the National Health Interview

Survey as well as when one wishes to efficiently incoporate variables other than age to predict the

disability prevalence (See Section 4).

We choose c̃L
xα = F̂−1

xL [F̂−1
x (1 − α)] and c̃U

xα = F̂−1
xU [F̂−1

x (1 − α)], where F̂xL and F̂xU are the

empirical distribution functions of B̃L
x − B̂L

x and B̂U
x − B̃U

x , and F̂x is the empirical distribution

function of max{F̂xL(B̃L
x −B̂L

x ), F̂xU (B̂U
x −B̃U

x )}. The resulting confidence interval, [B̂L
x − c̃L

xα, B̂U +

c̃U
xα] asymptotically covers the true bounds by the fixed probability 1−α. Moreover, these confidence

intervals are balanced in a sense that they treat upper and lower bounds fairly, i.e., Pr(B̂L
x − c̃L

xα ≤

13



BL
x ) = Pr(B̂U

x + c̃U
xα ≥ BU

x ) hold asymptotically. In contrast, the bootstrap bounds proposed by

Horowitz and Manski (2000) are not balanced.

3.4 Estimation of DFLE Using Abridged Period Life Table

Although our discussion so far is based on unabridged period life tables, in many situations only

abridged period life tables, in which the width of age interval is n > 1 years, are available to applied

researchers. Indeed, many of the studies cited in Section 1 as well as the original article by Sullivan

(1971) apply Sullivan’s method to abridged life tables. DFLE can be defined similarly for abridged

life tables. Analogous to equation 2, the total person-years lived in the given age interval [x, x+n)

among those alive at age x is given by nLx = lx [n + nqx(nax−n)] where the prescript n indicates

the interval width of abridged life tables. nLDF
x can also be defined in an completely analogous

manner (see equation 5), and is equal to, nLDF
x = (1− πx) lx [n + nqDF

x (naDF
x −n)]. Then, DFLE

under abridged life tables is defined as eDF
x ≡ 1

lx

∑(ω−x)/n
i=0 nLDF

x+in where ω now represents the

beginning age of the last age interval.

Given this setup, Proposition 1 directly applies to the case of abridged life tables with the

condition nqDF
x (naDF

x − n) = nqD
x (naD

x − n) = nqx(nax − n). The sharp nonparametric bounds

of eDF
x given an abridged life table can also be derived in a completely analogous manner (see

Proposition 2), and they are given by,

BU
x =

1
lx

(ω−x)/n∑
i=0

(1− πx+in) lx+in min
[
n,

nqx+in(nax+in − 1) + n

1− πx+in

]
, (13)

BL
x =

1
lx

(ω−x)/n∑
i=0

(1− πx+in) lx+in max
[
0,

nqx+in( nax+in − n)
1− πx+in

+ n

]
. (14)

The resulting bounds are often much wider than those of unabridged life tables because the infor-

mation is lost in the process of aggregation. It is also easy to verify that under the monotonicity

assumptions considered in Section 3.2, i.e., naDF
x ≥ naD

x and nqDF
x ≤ nqD

x , the lower bound equals

Sullivan’s estimator 1
lx

∑(ω−x)/n
i=1 (1− πx+in)Lx+in (see Proposition 3).

14



The estimation of these bounds and calculation of their confidence intervals can be done in the

same manner as the case of unabridged life tables. In practice, applied researchers often apply

Sullivan’s method by approximating πx with the disability prevalence of the overall age group

interval [x, x + n), i.e., nπx, rather than estimating it at the beginning of the interval (e.g., Molla

et al., 2001). Although this is done to increase the precision of the sample mean estimator of the

disability prevalence by using a larger sample size, the approximation may be poor if the interval

is wide.

We emphasize that whether one uses Sullivan’s method or the proposed nonparametric method,

the estimation of DFLE under abridged life tables relies upon the assumption that there is no

transition between disability and disability-free status within the age intervals. Such an assumption

may not be realistic when the width of age interval is large. Moreover, the validity of the assumption

cannot be verified from the observed data, and hence the direction of the resulting bias can never be

known to researchers. To some extent, this is due to the nature of any discrete data as well as the

aggregation of age intervals. Even with unabridged life tables or longitudinal data, the statistcal

framework assumes that the transition between disability and disability-free status only occurs at

the beginning of age intervals. Nevertheless, this problem is severe with wider age intervals.

4 An Empirical Analysis of the 1999 U.S. Population

In this section, we apply the proposed nonparametric method to the 1999 U.S. population. We

first estimate DFLE and the proportion of remaining life spent disability-free for the overall popu-

lation. Next we disaggregate the 1999 U.S. population by age, sex, education, and race to examine

socioeconomic differentials of DFLE.

15



4.1 DFLE of the Overall Population

In this section, we apply the proposed method to estimate DFLE using the 1999 U.S. period life

table (Arias, 2002), which is summarized in Table 1, as well as the disability prevalence data

from the 1999 National Health Interview Survey (NHIS) and 1999 National Nursing Home Survey

(NNHS), which are briefly mentioned in Section 3.1. The NHIS is a multi-purpose health survey

conducted by the National Center for Health Statistics and is the principal source of information

on the health of the civilian, noninstitutionalized population of the United States (The number of

observations is 97, 059). The NNHS is a survey of nursing homes and related care facilities in the

United States conducted by the National Center for Health Statistics (The number of observations

is 8, 215). The use of the two surveys gives a complete picture of disability prevalence among

the noninstitutionalized and institutionalized populations. In all the analyses presented below,

the survey weights are incorporated so that respondents from the two surveys are appropriately

weighted according to their population sizes.

The third and fourth columns of Table 2 show the proportion disabled and life expectancy for

selected ages from the two survey datasets. Following the literature, a respondent was considered

disabled if he or she responded affirmatively to either of the following questions: “Do you need

help with activities of daily living?” and “Because of a physical, mental, or emotional problem, do

you need the help of other persons in handling routine needs ...?” where “. . . ” represents various

independent activities of daily living (e.g., Molla et al., 2004; Crimmins and Saito, 2001; Crimmins

et al., 1997). Whilte activities of daily living include bathing and showering, dressing, eating,

getting in/out of bed or chair, using the toilet, and getting around in home, the independent

activities of daily living include household chores, doing necessary business, and shopping. We

observe that the proportion disabled increases roughly monotonically with age (e.g., 5% at age 20,

19% at age 55, and 58% at age 85). Life expectancy on the other hand decreases monotonically
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Proportion Life No Smoothing Smoothing
Disabled Expectancy Estimated 95% C.I. Estimated 95% C.I.

Age (π̂x) (ex) DFLE Lower Upper Width DFLE Lower Upper Width
20 0.05 55.69 46.32 46.20 46.43 0.23 46.30 46.12 46.49 0.37
25 0.04 50.94 41.81 41.70 41.92 0.22 41.76 41.58 41.94 0.36
30 0.07 46.18 37.24 37.13 37.35 0.22 37.23 37.05 37.41 0.36
35 0.08 41.44 32.79 32.68 32.90 0.22 32.77 32.59 32.94 0.35
40 0.10 36.75 28.41 28.31 28.52 0.21 28.41 28.24 28.59 0.35
45 0.14 32.16 24.22 24.12 24.32 0.21 24.22 24.05 24.39 0.34
50 0.14 27.69 20.24 20.14 20.34 0.20 20.23 20.07 20.40 0.33
55 0.19 23.34 16.48 16.38 16.58 0.19 16.49 16.33 16.64 0.32
60 0.21 19.21 13.08 12.99 13.17 0.18 13.04 12.90 13.19 0.29
65 0.24 15.31 10.03 9.94 10.11 0.17 9.91 9.78 10.04 0.27
70 0.29 11.63 7.17 7.10 7.24 0.15 7.08 6.96 7.20 0.24
75 0.31 8.11 4.60 4.53 4.67 0.14 4.54 4.44 4.64 0.20
80 0.49 4.56 2.19 2.14 2.24 0.09 2.29 2.22 2.36 0.15
85 0.58 0.50 0.21 0.18 0.24 0.05 0.22 0.21 0.23 0.02

Table 2: Estimated DFLE based on Sullivan’s Method for Selected Ages. The first two columns
of the table show the proportion disabled in the sample of the two surveys and the life expectancy
of the 1999 U.S. population. The table also presents the point estimates of DFLE and their
95% confidence intervals using Sullivan’s Method. Two sets of the results are presented; one
using sample weighted averages (“No Smoothing”) and the other using the estimates from the
binomial Generalized Additive Model with the logistic link (“Smoothing”) to estimate the disability
prevalence.

wtih age (e.g., approximately 56 years at age 20, 23 years at age 55, and 0.5 years at age 85).

We first estimate DFLE using Sullivan’s method. The fourth column of Table 2 presents

the point estimate of DFLE, while the next three columns show the associated 95% confidence

intervals and their width (under the heading “No Smoothing”). When computing these estimates,

the disability prevalence πx is estimated using sample averages and the confidence intervals are

based on the expression of the variance in equation 9. For example, the 95% confidence interval of

Sullivan’s esimator is [46.20, 46.43] years for age 20, while that for age 85 is approximately [66, 88]

days.

We also estimate πx as a smooth function of age using the binomial General Additive Model

(GAM) with the logistic link (Hastie and Tibshirani, 1990). Such a strategy may be useful to

effectively uncover the structural relationship between the disability prevalence and age. It is also
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No Assumption Monotonicity Assumptions
Bounds of DFLE Balanced 95% C.I. Bounds of DFLE Balanced 95% C.I.

Age Lower Upper Width Lower Upper Width Lower Upper Width Lower Upper Width
20 46.12 46.60 0.48 45.94 46.88 0.94 46.30 46.60 0.29 46.13 46.88 0.76
25 41.57 42.05 0.48 41.40 42.33 0.93 41.76 42.05 0.29 41.58 42.33 0.75
30 37.04 37.52 0.48 36.87 37.80 0.93 37.23 37.52 0.29 37.06 37.81 0.75
35 32.58 33.06 0.48 32.41 33.33 0.93 32.77 33.06 0.29 32.60 33.34 0.74
40 28.23 28.70 0.48 28.06 28.98 0.92 28.41 28.70 0.29 28.25 28.98 0.74
45 24.03 24.51 0.48 23.86 24.78 0.92 24.22 24.51 0.29 24.05 24.78 0.73
50 20.04 20.52 0.48 19.87 20.79 0.92 20.23 20.52 0.28 20.07 20.80 0.73
55 16.29 16.77 0.48 16.13 17.04 0.91 16.49 16.77 0.28 16.32 17.04 0.72
60 12.84 13.32 0.48 12.68 13.60 0.92 13.04 13.32 0.28 12.88 13.61 0.73
65 9.71 10.18 0.47 9.55 10.47 0.92 9.91 10.18 0.27 9.75 10.47 0.72
70 6.86 7.33 0.47 6.70 7.63 0.93 7.08 7.33 0.26 6.91 7.63 0.72
75 4.32 4.78 0.47 4.18 5.09 0.90 4.54 4.78 0.24 4.41 5.09 0.68
80 2.06 2.52 0.46 1.99 2.77 0.78 2.29 2.52 0.23 2.22 2.77 0.56
85 0.00 0.44 0.44 0.00 0.44 0.44 0.22 0.44 0.22 0.20 0.44 0.24

Table 3: The Nonparametric Bounds of DFLE Without Assumption and With Monotonicity As-
sumptions. The table shows the estimated bounds and 95% balanced confidence intervals for
selected ages. The disability prevalance was estimated as a smooth function of age using the
binomial Generalized Additive Model with the logistic link.

more appropriate in our case because the age of respondents at the time of interview is measured

in quarters rather than years in NHIS. For implementation, we use an R package gam written by

Tibshirani to fit the model and compute the 95% bootstrap confidence interval for each age. The

final four columns of Table 2 (under the heading “Smoothing”) presents the results based on GAM

for selected ages. When compared with the results based on the sample averages, both the point

estimates and the 95% confidence intervals are quite different for older age groups. For example,

for ages 75, 80, and 85, the 95% confidence intervals from the two sets of the estimates do not

overlap with each other. The 95% confidence intervals based on GAM are also shorter for older

age groups.

Next, we use the methodology discussed in Section 3 to estimate the nonparametric bounds of

DFLE and compute the 95% balanced confidence intervals based on 10, 000 bootstrap replications.

We estimate πx using the GAM as before. The columns under the heading “No Assumption” of

18



Table 3 presents the estimated nonparametric bounds and their 95% confidence intervals for selected

age groups. The comparison with the estimates based on Sullivan’s method in Table 2 (the columns

under the heading “Smoothing”) shows that the resulting 95% confidence intervals based on the

method of bounds are significantly wider especially for older age groups. For example, in the group

of 80 years old, the 95% confidence interval based on the nonparametric bounds is [1.99, 2.77] years

with the width of approximately 9 months, whereas Sullvan’s method yields [2.22, 2.36] with the

width of roughly two months.

We also estimate the nonparametric bounds of DFLE with the monotonicity assumptions dis-

cussed in Section 3.2. The results are presented in the columns under the heading “Monotonicity

Assumptions” of Table 3. As expected, the width of the bounds narrows significantly when the

montonocity assumptions are invoked. For example, the 95% confidence interval of DFLE at age

60 is [12.88, 13.61] with the monotonicity assumptions, where as it is [12.68, 13.60] years without

assumption. The latter confidence interval is more than 26% wider than the former. Furthermore,

as shown in Proposition 3, the lower bound under the monotonicity assumptions equals exactly the

point estimate of DFLE based on Sullivan’s method, indicating that Sullivan’s method is likely to

underestimate DFLE if the monotonicity assumptions are correct.

The proportion of remaining life spent disability-free, eDF
x /ex, is another important quantity of

interest, and its nonparametric bounds can be computed using the bounds of DFLE. Figure 2 shows

the bounds of the proportion and their 95% balanced confidence intervals with no assumption (left

panel) and with the monotonicity assumptions (right panel). We observe that both the upper and

lower bounds of the proportion decreases gradually over age except that the upper bound sharply

increases at the last age groups. The width of the bounds also increases monotonically with age and

sharply goes up for older age groups. As shown in the left panel of Figure 2, between 0.82 and 0.84

of remaining life is spent disability-free at age 20, whereas the proportion decreases to between 0.62
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Figure 2: The Nonparametric Bounds for the Proportion of Remaining Life Spent Disability-
Free. The proportion of remaining life is the ratio of disability-free life expectancy and overall life
expectancy (i.e., eDF

x /ex). The left and right panels of the figure show the proportion with no
assumption and with the monotonicity assumptions, respectively. The bounds (dashed line) and
95% confidence interval (solid line) are presented. The upper and lower bounds of the proportion
decreases monotonically with age up until the last age groups.

and 0.68 at age 65 and 0.44 and 0.61 at age 80. Moreover, the 95% balanced confidence intervals

of the proportion widen over age. The right panel of Figure 2 displays the proportion when the

monotonicity assumptions are invoked. The confidence interval of the proportion widens less over

age. The estimated proportion is between 0.83 and 0.84 at age 20, 0.64 and 0.68 at age 65, and

0.49 and 0.61 at age 80.

4.2 DFLE by Sex, Race, and Education

Previous research has found important differences in mortality with respect to race (e.g., Sorlie

et al., 1995), sex (e.g., Bird and Rieker, 1999), and education (e.g., Rogot et al., 1992). Pappas et al.

(1993) argue the disaparity in mortality rates have increased over time between men and women,

whites and non-whites, and by education level. Molla et al. (2004) found similar differences in

morbidity by sex and education. Finally, Crimmins and Saito (2001) argue that sex, race, and
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education differentials are increasing over time.

We estimate life expectancy and DFLE for the 1999 U.S. population separately by single year

of age, sex, race, and educational attainment. Sex, race, and educational attainment are important

factors of socioeconomic status (Sorlie et al., 1995). We begin our analysis at age 30, the age at

which education is considered complete for most adults (Crimmins and Saito, 2001). Following

Molla et al. (2004) and Crimmins and Saito (2001), educational attainment was broken into three

categories: 0− 8 years (low), 9− 12 years (medium), and 13 of more years of schooling (high). For

race, we use two categories: white and non-white. We then determine mortality information by

age, sex, race, and education for 1999 using the vital statistics obtained by the National Center

for Health Statistics. The population estimates for these groups were obtained from the 1999

Current Population Survey. Based on death and population information, we calculate group specific

conditional probabilities of death. Finally, life expectancy for each group was calculated using the

qx values specific to each group as well as the overall U.S. period lifetable ax values, which are

assumed to be applicable to all groups.

An individual was considered disabled using the same definition of disability in Section 4.1.

For the noninstitutionalized population (i.e., community residents), disability status by factor was

estimated by the NHIS. For the institutionalized population (e.g., nursing home and long-term care

residents), disability status by factor was estimated by the NNHS. Similar to Molla et al. (2004),

all institutionalized persons age 65 years and higher were considered disabled. The NNHS does

not include the educational attainment of respondents. This information was obtained from the

institutionalized residents surveyed in the 1993(note: use 1999 when we receive the medicare

data) Medicare Current Beneficiary Survey (MCBS). The distribution of the institutionalized

population by education for a given age, race, and sex was estimated from the MCBS Access to

Care Module.
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We use the methodology proposed in Section 3 to estimate the nonparametric bounds of DFLE

with the monotonicity assumptions by sex, education, and race for each age from 30 to 80 years.

We model the disability prevalence for each category by using the binomial GAM with the logistic

link where along with the smooth function of age, the main effects for sex, race, and education

levels are estimated. The smoothing approach is more appropriate than computing sample averages

within each group because some groups have very few respondents. Although it is possible to add

interaction effects, we find that they do not significantly improve the model fit.

Figure 3 presents the estimated upper and lower bounds of the differences in DFLE across

different groups by using one of the four middle educated groups as the reference group within a

given row and comparing them with the other groups. For example, the first row, second column

plot (i.e., plot (1,2)) compares the estimated DFLE of high, medium, and low educated non-white

males with middle educated white males. The DFLE of highly educated non-white males is between

2.73 and 3.36 years higher at age 30 and 0.74 and 1.51 years higher at age 65 than for middle

educated white males at these ages. Middle educated non-white men experience significantly less

years of DFLE than equally educated white men (3.98 to 4.59 years less at age 30 and 1.17 to 1.71

years less at age 65).

Within race, high and medium educated women experience more years of disabilty-free life

than medium educated men (see plots (1,3) and (2,4)). Within sex, high and medium educated

whites experience more years of disability-free life than middle educated non-whites. Of significant

note is that even low educated whites experience nearly equivalent years of disability-free life (see

plots (2,1) and (4,3)). The interaction of sex and race also reveal important differences. Plot

(2,3) compares white women of all education levels against medium educated non-white men. High

and medium educated white women experience significantly more years of DFLE for than this

reference group for all ages. Low educated white women also experience more years of DFLE
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between ages 30 and 70, after which their morbidity experience is approximately equal despite

lower educational attainment. The same is not true for white men and non-white women (see plot

(4,1)). Low educated white men do not experience more years of DFLE compared to medium

educated non-white women.

Figure 4 presents the estimated upper and lower bounds for the differences in the proportion

of remaining life spent disability-free (i.e., eDF
x /ex) among different groups for ages from 30 to 80

years in the exactly same way as in Figure 3. The main diagonal compares each group to itself

where the middle educated are taken as the reference categeory. For example, plot (1,1) shows that

among white males at age 30, the proportion of life disability-free is between 0.76 and 0.78 for the

highly educated, while only between 0.68 and 0.71 for the middle educated and 0.57 and 0.59 for

the low educated. The proportion of remaining life increases for the high educated and decreases

for the low educated compared to the middle educated for all four race-sex groups over age (see

the plots in the main diagonal). Within race, equally educated men experience a higher proportion

of remaining life free of disability until approximately age 70 (see plots (3,1) and (4,2)). Within

sex, the differences in the proportions are persistent; equally educated whites experience a higher

proportion of disability-free life than non-whites for all ages (see plots (2,1) and (4,3)).

Two comparisons that demonstrate the interaction of sex and race are plots (4,1) and (1,4).

In the former plot, white men of all education levels are compared to middle educated non-white

women. The proportion of remaining life spent disability-free is approximately equal between low

educated white men and middle educated non-white women, despite their difference in the edu-

cation level. Non-white women are the only group where the highly educated do not experience

significantly higher proportion of remaining life without disability. Similarly, the latter plot shows

that the proportion for highly educated non-white women is approximately equal to middle edu-

cated white men, also despite their difference in the education level. These results indicate that
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the effect of race and sex may be especially pronounced among non-white women of all ages.

Important sex, race, and sex-race interation differences exist in DFLE and proportion of re-

maining life spent disability-free. While medium educated women experience more years of DFLE

than medium educated men of the same race, they experience less proportion of remaining life

without disability (see plots (1,3) and (2,4) of Figures 3 and 4). However, this pattern does not

hold when sex is held constant. For men and women, medium educated whites experience both

more years of DFLE and a greater proportion of remaining life without disability than medium

educated non-white counterparts (see plots (2,1) and (4,3) of Figures 3 and 4).

5 Concluding Remarks

Robust estimation of DFLE is vital to testing the competing theories of morbidity and mortality.

Such estimates help to answer the important question of whether additional years of life are spent

in poor health. Over the last 30 years, Sullivan’s method has been the most widely used method for

estimating DFLE. Academic and government researchers use this method because of the relative

ease of obtaining mortality data from a period life table and disability data from a cross-sectional

survey. Yet, we show that Sullivan’s method relies on the strong assumption to point identify DFLE.

In this paper, we develope an alternative nonparametric method that avoids such an assumption.

We derive the bounds of DFLE and use the bootstrap procedure to construct accurate and balanced

confidence intervals. We also showed that under plausible monotonicity assumptions, Sullivan’s

method is likely to underestimate DFLE. Our analysis of the 1999 U.S. population demonstrates

that the proposed nonparametric method provides a valid estimate of DFLE. The resulting bounds

are informative even without any assumption, but they yield inferences different from Sullivan’s

method especially for older age groups. The methodology developed in this paper is relatively easy

to implement and provides a robust estimate of DFLE using period life table and cross-sectional

disability survey data.

26



Appendix: Proofs of the Propositions

Proof of Proposition 1. Sullivan’s estimator consistently estimates the disability-free life ex-

pectancy if and only if the following equation holds, eDF
x = 1

lx

∑ω
i=x(1 − πi)Li. By comparing

equation 2 with equation 5, it is immediate that Sullivan’s estimator is equal to eDF
x for all x if

and only if qDF
x (aDF

x − 1) = qx(ax − 1). Now, note that the following equalities hold,

qx = πxqD
x + (1− πx)qDF

x , (15)

qxax = πxqD
x aD

x + (1− πx)qDF
x aDF

x , (16)

for all x = 1, 2, . . . , ω. From equation 15 and qDF
x (aDF

x − 1) = qx(ax − 1), we obtain qxax =

qDF
x (aDF

x − 1) + πxqD
x + (1 − πx)qDF

x . Substituting this into equation 16 and rearranging yield

qDF
x (aDF

x − 1) = qD
x (aD

x − 1).

Proof of Proposition 2. By substituting equation 5 into equation 7, we obtain eDF
x = 1

lx

∑ω
i=x(1−

πi) li
[
1 + qDF

x (aDF
i − 1)

]
, where lx is observed for each age group, and πx can be consistently and

nonparametrically estimated from the cross-sectional disability survey. Therefore, we seek to bound

qDF
i (aDF

i − 1) for each i = x, x + 1, . . . , ω in order to bound eDF
x . Using equations 15 and 16, we

write aD
i as a function of qi, ai, πi, and qDF

i . Since aD
i is bounded below by 0 and above by 1, after

rearranging we obtain the following inequality conditions if qi 6= (1− πi)qDF
i ,

qDF
i (aDF

i − 1) >
qi(ai − 1)

1− πi
. (17)

qDF
i aDF

i <
qiai

1− πi
. (18)

Using inequality 17 and the fact that qDF
i and aDF

i are bounded below by 0 and above by 1,

the greatest lower bound of qDF
i (aDF

i − 1) equals max
[
−1, qi(ai−1)

1−πi

]
. To derive the least upper

bound, subtracting qDF
i from both sides of inequality 18 yields qDF

i (aDF
i −1) < qiai

1−πi
− qDF

i . Then,

using equation 15 and the fact that both qDF
i and qD

i are bounded below by 0 and above by
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1 imply max
(
0, qi−πi

1−πi

)
≤ qDF

i ≤ min
(
1, qi

1−πi

)
, the least upper bound of qDF

i (aDF
i − 1) equals

min
[
0, qi(ai−1)+πi

1−πi

]
. Finally, when qi = (1 − πi)qDF

i , equations 15 and 16 imply aDF
i = ai and

hence qDF
i (aDF

i − 1) = qi(ai − 1)/(1− πi), which is always within the derived bounds.

Proof of Proposition 3 If qDF
i ≤ qD

i , then equation 15 implies max
(
0, qi−πi

1−πi

)
≤ qDF

i ≤ qi.

Moreover, if aDF
x ≥ aD

x , then inequality 17 becomes the new inequality ax ≤ aDF
x . It follows

immediately that under these monotonicity assumptions the lower bound for eDF
x is attained when

aDF
x = ax and qDF

x = qx, while the upper bound stays the same as before.
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