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The current study addresses the demographic and geographic aspects of population 
change in the United States during the 1990s. Census data and vital statistics are used to 
calculate natural increase rates and net migration rates for all 3070 counties in the 
contiguous United States. The components of population change are broken down into 
three race/ethnicity groups - black, Hispanic, and white - and a series of exploratory and 
regression analyses are conducted to examine the relationship between natural increase 
and net migration. The natural increase rates of blacks, Hispanics, and whites are each 
significant predictors of total net migration rates for a county. The data also provides 
evidence for spatial processes such as diffusion and regionalization in the patterns of 
population change.  
 

BACKGROUND 

 Population distribution in America across the rural to urban continuum has been a 

focus of demography and population geography for decades.  Studies tend to categorize 

some unit of geography – usually the county – into a hierarchy based on population.  

However, the hierarchical analysis is often used to reach spatial conclusions, which may 

or may not be valid given the spatial distribution of population.  For instance, claims of 

“deconcentration”, “regionalization”, and “segregation” all imply a real-world, spatial 

arrangement of population, but space is often ignored as researchers aggregate areas into 

a hierarchy.  This paper will attempt to use an explicitly spatial approach to measure 

change in population distribution among continental U.S. counties during the 1990s.  

First, a brief literature review on the themes of deconcentration, regionalization, and 

segregation is offered as a baseline for understanding the most commonly cited processes 

of population distribution.  Then, a series of spatial analyses are conducted on the 
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components of population change in the U.S. – net migration and natural increase – to 

test the operation of these three processes across space.  The conclusions do not entirely 

contradict previous research, but this work suggests that there are important theoretical 

and empirical differences between hierarchical and spatial approaches to understanding 

population distribution.  

 Claims of population deconcentration over the last five decades must be couched 

in the long-run trend from 1790 to 1900 during which American population moved to 

frontier areas and then began to concentrate in urbanized areas from 1900 to the present 

(Otterstrom 2001).  Much of the research which focuses on more recent decades relies on 

the concept of “equilibrium seeking” (Otterstrom 2001; Manson & Groop 2000) or 

detailing localized sub-processes within an ongoing urbanization trend (Elliott 1997).  In 

either case, researchers usually test the implicit hypothesis that population is moving 

down a hierarchy from urban to suburban to rural counties.  The evidence for population 

deconcentration has been mixed.  The 1970s witnessed a higher rate of population 

retention and more in-migration for rural counties (Beale 1975) leading to the widespread 

use of the term “rural rebound” (cf. Johnson & Fuguitt 2000; Johnson, Nucci & Long 

2005).  The 1980s did not continue this trend but did not entirely revert to long-run 

urbanization trends, either (Johnson 1993).  The 1990s resembled a less dramatic version 

of the 1970s for some age-groups and economic-sectors within rural areas (Plane, Henrie 

& Perry 2005; Johnson, Voss, Hammer, Fuguitt & McNiven 2005).  Migration to rural 

areas was strongest in the early and middle part of the decade but was significantly lower 

after about 1997.  Since the 2000 Census, post-censal population estimates have been 
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used to suggest that there may be a slight upturn in migration to rural counties since the 

lull at the end of the 1990s (Johnson, Nucci & Long 2005). 

 For the most part, this approach to population change does not use counties as 

geographical units arranged in space; instead, the research is much more likely to treat a 

county as a category within a rural-urban continuum.  For example, Plane, Henrie, and 

Perry (2005) begin with Ravenstein’s “step migration” theory and delimit a hierarchy of 

counties with five sizes of metropolitan counties, one size of micropolitan county, and 

one size of non-CBSA counties.  Using layer cake diagrams, the authors create very clear 

visual representations for the movement of population down the hierarchy (Plane, Henrie 

& Perry 2005:  15314-5).  However, deconcentration may be well supported as a national 

trend within the rural to urban hierarchy, but it may not actually occur across the space 

adjacent to all urban areas in the country. 

 Regionalization processes may help to explain larger scale population shifts.  

Increased migration and natural increase have spurred population growth in more 

southern and coastal areas during the 1990s.  Two explanations for regional shifts in 

population have been posited (Frey & Johnson 1998).  First, the climatic and recreational 

benefits of Sun Belt and amenity-rich locations have been identified as major pull factors 

for retirees and other migrants (Cook & Mizer 1994; McGranahan 1999).  Second, the 

economic restructuring of the 1970s and 1980s increased the push factors from farming 

and manufacturing dependent areas such as the Midwest and Great Plains (Noyelle & 

Stanback 1984).  While this area of literature seems to make an explicitly spatial 

argument – migration flows from one region to another region – the definition of ‘region’ 

will obviously have important effects on the conclusions.  Allowing for a gradual 
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transition between ‘regions’ within in the U.S. instead of arbitrarily designating some 

places as part of the Sun Belt or Rust Belt, for example, seems like a preferable 

operationalization of geographic space. 

 Both deconcentration and regionalization trends are often cited in literature as 

promoting residential segregation based on race/ethnicity and socioeconomic status (see 

for example, Manson & Groop 2000; Massey & Denton 1985, 1987, 1993).  The relation 

between deconcentration, regionalization, and racial/ethnic segregation was the 

motivation to include natural increase rates broken down into race/ethnic categories in the 

current analyses.  Much of the research on residential segregation would suggest two 

reasons for the statistical relationship between natural increase rates and net migration 

rates.  First, NIRs are different across race/ethnic categories, so in some ways, the NIRs 

act as surrogate indicators of the segregation present at the beginning of the 1990s.  

Second, NIRs also indicate the age-structure of the population, and thus, may be able to 

capture places attractive to young families, which would presumably create higher 

fertility rates and lower mortality rates.  

 For example, Logan, Stults, and Farley (2003) argue that Hispanics experienced 

an increase in residential segregation in America’s metropolitan areas during the 2000s, 

even despite the fact that Hispanic migration into less segregated counties was higher 

than Hispanic migration into more segregated counties.  The authors suggest the 

following mechanism to explain the paradox:  1) in-migration during the 1980s and early 

1990s of Hispanics into less segregated counties, 2) higher population growth rates (high 

birth rates and low death rates) for Hispanics than other race/ethnicities, 3) resulting in 

higher average segregation ratios because Hispanics are living in counties with higher 
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percentages of Hispanics at the end of the decade.  Note here that the authors, following a 

general trend in residential segregation research, use statistics such as dissimilarity scores 

for individual Census Tracts, which are then averaged across a metropolitan area or 

across the entire nation to draw conclusions about the changes in residential segregation 

over time.  This may not be the best method for examining the true amount of residential 

segregation across space.   

 Many conclusions about residential segregation tend to treat human individuals as 

merely agents of rational decision making (cf. Massey, Arango, Hugo, Kouaouci, 

Pellegrino & Taylor 1993 for a discussion of migration theories); however, there is a 

broader theoretical framework which attempts to incorporate social networks, family ties, 

and cultural factors into explanations of residential segregation.  Especially relevant to 

the current analysis is work on the patterns in migration decisions exhibited by non-white 

individuals.  For example, there is evidence that blacks are more likely than whites to 

return to a previous home after initial migration (Newbold 1997).  In terms of 

regionalization, blacks have exhibited higher migration than whites into the Southeast 

since the 1970s after a period of very high black out-migration from 1940 to 1970 

(Adelman, Morett & Tolnay 2000).  Specifically related to the current focus on natural 

increase rates, studies have supported the conclusion that kinship ties are more important 

in determining migration decisions for single black women with children than is the black 

population in general (Johnson & Roseman 1990).  Taken together, this body of literature 

would suggest that the natural increase rates for non-white groups have important 

predictive power for the overall migration rates of a particular county. 
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 This is certainly not an exhaustive overview of the literature on population 

distribution, but it does serve to outline the three processes of deconcentration, 

regionalization, and segregation.  Hopefully, it is now clear that much of the work 

described here has failed to incorporate the spatial distribution of population changes.  

This is especially unfortunate, because the use of space offers one possible way to 

integrate all three processes in an understanding of population distribution.  The current 

paper is a first attempt to examine the interplay of deconcentration, regionalization, and 

segregation across space.  Instead of assuming a hierarchical or arbitrary designation of 

counties in the United States, the spatial analyses below will only need to adhere to 

Tobler’s First Law of Geography as a theoretical underpinning.  Namely, “… everything 

is related to everything else, but near things are more related than distant things” (Tobler 

1970:  236). 

METHODS 

 The data used for the current analysis is drawn from the 1990 and 2000 U.S. 

Census and from vital statistics provided by the National Center of Health Statistics 

(Voss, McNiven, Hammer, Johnson & Fuguitt, 2003).  The exact methodology used to 

compute county-level birth, death, and net migration statistics is detailed in a working 

paper from the Center for Demography and Ecology at the University of Wisconsin-

Madison (Voss, McNiven, Hammer, Johnson & Fuguitt 2004).  There are three important 

considerations to keep in mind for all analyses drawn from this dataset.  First, all counties 

in Alaska and Hawaii have been removed from the working dataset because the spatial 

analyses require counties to share borders.  Second, there were several county boundary 

changes between 1990 and 2000.  For the most part these changes were dealt with by 
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aggregating birth, death, and net migration statistics into larger geographic areas which 

included all territory ever included in the county.  While this approach sacrifices some 

precision, it allows for the comparison of identical geographic units in 1990 and 2000.  

These two changes resulted in a final database of 3070 counties in the contiguous United 

States. 

A third consideration of the data is the change in the race/ethnic groups between 

the 1990 and 2000 U.S. Census.  The main problem is data consistency stemming from 

the ability of respondents to select multiple race/ethnic categories on the 2000 version.  

The data used here make use of proportional distribution methods for all respondents that 

selected more than one race/ethnic group in 2000 in order to maintain comparability in 

the populations across the decade.  Briefly, a person that selected Asian and black on the 

2000 Census would be proportionally distributed ½ to Asian and ½ to black populations 

within the county; however, this procedure is not used to distribute those people that 

selected Hispanic as an ethnic origin.  In the analyses that follow, Hispanic is defined as a 

person of any race that indicated Hispanic origin, white is defined as non-Hispanic 

whites, and black is defined as non-Hispanic blacks.  Because of relatively small 

populations in many counties and increased problems with proportional distribution, 

additional race/ethnic groups – for example Asians, Native Americans, and others – are 

excluded from the present study.   

Exploratory spatial data analysis was carried out using the software package 

GeoDa1.  Further exploratory techniques were utilized within Geographically Weighted 

                                                 
1 GeoDa software and documentation available at:  http://sal.agecon.uiuc.edu/geoda_main.php.  See for 
example, Anselin, Luc, Ibnu Syabri, and Youngihn Kho.  2004.  “GeoDa:  An introduction to spatial data 
analysis.” 
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Regression2 (GWR) software.  The standard regression models were estimated using 

Ordinary Least Squares methods, and all spatial regression models were estimated using 

Maximum Likelihood methods – both within GeoDa.  Throughout, the ESRI ArcGIS3 

suite version 9.1 was used to map and display the outputs of the spatial data analysis. 

RESULTS & ANALYSES 

 This section contains five sub-sections which address the main steps of the spatial 

analyses:  exploratory analysis of the dependent variable, exploratory and GWR analysis 

of the explanatory variables, trend surface analysis, specification of a standard linear 

regression model, and the specification of spatial regression models. 

Net Migration Rates as Dependent Variable 

 Figure 1 displays the county-level net migration rates in six equal categories with 

lighter colors representing more out-migration and darker colors signifying more in-

migration.  Conducting a cursory visual assessment should yield an immediate 

conclusion:  there is a very dramatic region of out-migration in the center of the country 

stretching from western Texas to the Canadian border.  West of this area many counties 

register in the very highest in-migration categories, and east of the this area there is 

strong clustering of in-migration counties around major metropolitan areas such as 

Atlanta, GA, Orlando, FL, and San Antonio, TX.  Of course it is important to keep in 

mind the differences in county size in the western and eastern halves of the United States, 

which may be contributing to the visual pattern of widespread in-migration in the west 

and metropolitan clusters of in-migration in the east.  The Moran’s I statistic reported in 

                                                 
2 Geographically Weighted Regression (GWR) software and documentation available at:  
http://www.nuim.ie/ncg/GWR/index.htm.  See for example, Charlton, Martin, Stewart Fotheringham, and 
Chris Brunsdon.  2003.  “GWR 3:  Software for geographically weighted regression.” 
3 More information about ArcGIS suite version 9.1 is available from the ESRI website:  
http://www.esri.com/software/arcgis/.   
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Table 1 confirms that there is a strong positive autocorrelation among county-level net 

migration rates4. 

Natural Increase Rates as Explanatory Variables 

 County-level natural increase rates show significant autocorrelation, as is shown 

by the Moran’s I reported in Table 1.  More importantly, though, the natural increase rate 

                                                 
4 The Moran’s I statistic is the most commonly used measure of spatial autocorrelation (Cliff and Ord 
1981).  For target county j and all other counties i, it takes the form 
 
Ij = Σi Wxixj / xj

2  
 
where W is a weight matrix that defines the neighborhood of each county, and the x’s represent the 
deviation from the global mean net migration rate for either the target county or all counties.  Summing 
across all possible target counties, i.e. summing across all j’s, results in the global Moran’s I value for all 
counties.  The Moran’s I value can generally be interpreted like a Pearson’s correlation coefficient between 
the net migration rates of a target county and the average net migration rates in its neighborhood.  
Therefore, a positive Moran’s I signifies clusters of similar values (high-high or low-low) and a negative 
Moran’s I signifies the juxtaposition of dissimilar values (resembling a checkerboard pattern).  The 

Figure 1. 
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for each of the three race/ethnicity groups is also highly autocorrelated.  This suggests 

that there are clusters of counties throughout the United States with above average (and 

below average) natural increase rates for each race/ethnicity group.  These clusters 

provide evidence that natural increase rates are not the same across all counties, and the 

differences in natural increase rates may help to predict differences in net migration rates.  

There are two possible interpretations of the natural increase rates as explanatory 

variables, and each argues for a slightly different interpretation of the segregation 

processes of population distribution.  Although not strictly used as a hypothesis testing 

instrument, GWR software allows for the visualization of the three race/ethnic groups’ 

natural increase rates as predictors of net migration rates across the country.  Because of 

the way the software works, it is possible to see if different natural increase rates are 

better or worse predictors in different areas of the country.  It will be explained how this 

can be used for evidence to decide between the two possible interpretations of natural 

increase rates. 

Table 1. Descriptive Statistics. 

 Global 
Mean Minimum Maximum Moran’s I 

Net Migration 
Rate 0.0540 -0.3684 1.2034 0.3455*** 

     

Total NIR 0.0342 -0.3513 1.5701 0.1532*** 

Black NIR 0.0423 -10.5000 1.0000 0.0350** 

Hispanic NIR 0.1340 -16.0000 1.0000 0.0601** 

White NIR 0.0127 -0.1897 0.2383 0.3102*** 

* p<.05, ** p<.01, *** p<.001 
 

                                                                                                                                                 
significance test for the Moran’s I statistic represents the chance that the given spatial pattern was drawn 
from random distribution across counties of the observed net migration rates. 
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 Natural Increase Rates as Socioeconomic Prosperity Indicator.  High natural 

increase rates are direct indications of a county with a high birth rate and a low death rate.  

This is a simple demographic fact, but the underlying causes of high birth rates and/or 

low death rates are less clear.  One possibility is that a high birth rate may be an indicator 

of a county’s health care, education, or economic infrastructure.  Also, a low death rate 

may arise from a relatively lower crime rate, poverty rate, or better access to health care.  

Taken as a whole, a higher natural increase rate could be interpreted in this manner as an 

indicator of a more socioeconomically prosperous county.  This interpretation of natural 

increase rates draws from the theoretical background offered by economic explanations 

of net migration, such that a county blessed with beneficial characteristics would be 

hypothesized to display a relatively higher natural increase rate for all three race/ethnic 

groups and in most cases also a higher net migration rate.  If natural increase rates do 

indeed indicate socioeconomic prosperity, the GWR output should show that all three 

race/ethnic group natural increase rates vary together as predictors of net migration rates. 

 Natural Increase Rates as Age-Race Structure Indicator.  As an alternative, 

natural increase rates could be interpreted as an outcome of residential sorting based on 

age and race characteristics.  To be more precise, a county’s natural increase rate may be 

understood as a function of its inhabitants.  If, for example, a county has historically 

attracted and/or retained fertile-aged men and women of a particular race/ethnic group 

then that county will be more likely to have a high natural increase rate for that 

race/ethnic group.  If, on the other hand, a county has lost fertile-aged adults and gained 

older adults – most likely in the form of retirees – within a certain race/ethnic group, then 

that county would be much less likely to have a high natural increase rate for the 1990s.  
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This interpretation is closely aligned with the theories of racial/ethnic residential 

segregation outlined above, which suggested that natural increase rates could be used as 

indicators of the race/ethnic composition and the age-structure of a county.  Given this 

interpretation, it would be hypothesized that net migration rates would be most closely 

related to the natural increase rate of the largest and most mobile race/ethnic group in the 

county.  If natural increase rates are capturing the effect of the age-race structure in a 

county, the GWR output should show different “hot” and “cool” areas for each 

race/ethnic group coefficient.  One specific prediction, for example, would be a highly 

significant coefficient for the Hispanic NIR in a band from California to Texas while the 

two other groups would not show up as significant in these areas. 

 Figure 2 displays four maps of the significance level for each variable in the 

GWR model:  constant, black NIR, Hispanic NIR, and white NIR.  As can be clearly 

Figure 2. 
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seen, there is very little overlap between each of the three race/ethnic groups.  I therefore 

conclude that the second interpretation of natural increase rates as indicators of the age-

race structure is the more valid approach.  In other words, a county’s historical trends in 

the migration and retention of fertile aged adults of certain race/ethnic groups is a 

significant predictor of further net migration rates for the county. 

 One great example of this is the Virginia-North Carolina-South Carolina5 area 

shown in Figure 3.  Almost no county falls within the darkest region in more than one of 

these maps, and the composite map shows distinct regions where the NMRs would be 

best predicted based on a different set of NIRs.  For example, west of Raleigh, NC the 

                                                 
5 This example was inspired by the ethnographic dissertation research of Helen B. Marrow, in which she 
describes the interaction between African Americans and new Hispanic immigrants in rural South Carolina.  
For more information see:  http://www.rprconline.org/Fellowships/Marrow_Abstract.pdf.  

Figure 3. 
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white NIRs are significant predictors and east of Raleigh black NIRs are significant 

predictors of net migration, and there are only three counties of overlap.  This suggests 

that there are important differences in the relationship between the natural increase rates 

of certain race/ethnic groups in a county and the overall net migration rate into that 

county. 

Trend Surface Analysis 

 A trend surface analysis was conducted in order to measure and control for spatial 

drift during the 1990s in net migration patterns across the country.  This “drift” can be 

thought of as the regionalization process described above: an increase in retirees 

migrating to the southwest and Florida combined with out-migration from the upper 

Great Plains.  To find the spatial drift in county net migration rates, a model was 

Figure 4. 
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constructed which used the X and Y coordinates of each county’s centroid as the set of 

explanatory variables.  The complete trend surface model included coefficients for X, Y, 

X2, Y2, and X*Y; however, because of where the X- and Y-axis fell in relation to the 

United States map (see Figure 4), only three of the explanatory variables were deemed to 

have logical interpretations.  An example of an illogical coefficient is X*Y, which 

represents the effect of county location being in either the northwest or the northeast, and 

since these counties are not a continuous region within the United States, it does not seem 

useful to construct a measure of the spatial drift towards these areas. 

 In the reduced model, the negative coefficient for X signifies that counties further 

to the west have a higher net migration rate.  Likewise Y has a negative coefficient 

signifying a more southerly location predicts a higher net migration rate.  Since X2 has a 

positive coefficient, there is statistical evidence to support the visual inference such that 

counties further away from the center of the United States have higher net migration 

rates.  Table 2 compares the complete trend surface model with the model containing 

Table 2.  Regression Coefficients of Trend Surface Model. 

 Full Surface 
Model 

Reduced Surface 
Model 

Constant 0.0688** 0.1236*** 

X 0.6163*** -0.0697** 

Y 0.0692 -0.4847*** 

X2 0.1931*** 0.2261*** 

Y2 -0.1340  

X*Y -0.3441***  

   

Adjusted R2 0.0719 0.0558 

AIC -3855.19 -3804.43 

SC -3819.01 -3780.31 

* p<.05, ** p<.01, *** p<.001 
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only “logical” coefficients, and it should be noted that the model selection criteria all 

point to the complete model.  This difference disappears when the trend surface models 

are combined with natural increase rates as explanatory variables6, and therefore, the 

reduced trend surface model will be used throughout to aid in the interpretability of the 

spatial models. 

Standard Regression Model  

 An ordinary least squares estimation of a linear regression model was conducted 

to understand the global relationships between natural increase rates and net migration 

rates.  Coefficients and model fit statistics are summarized in the first column of Table 4, 

which can be found in the next sub-section.  Of particular note with this model is the 

generally low adjusted-R2 value of 0.1085, indicating that there is quite a bit of variation 

in net migration rates not captured by natural increase rates. 

 To obtain spatial diagnostic statistics, a county’s neighborhood is defined as a 

second-order queen contiguity matrix7.  This means that each county has a neighborhood 

including every county it shares an immediate border with, and additionally, all counties 

that share a border with this first “ring” of neighbors (i.e. the neighbors’ neighbors).  As  

                                                 
6 All OLS and spatial models were run with both the full surface model, reduced surface model, and no 
surface model.  The addition of the reduced surface model improved the predictions of NMRs the most in 
the OLS, spatial lag, and spatial error models.  However, neither the full or reduced surface model 
contained any significant variables within the full SARMA model described below. 
7 Within the field of spatial analysis, the specification of the neighborhood structure is often given little 
theoretical or empirical attention, and instead is often picked in an arbitrary or pragmatic way.  This is an 
unfortunate reality because the geographic “neighborhood” for social phenomenon is usually not arbitrary.  
I am also vulnerable to this critique of spatial analysis, but I would offer that the social phenomenon of net 
migration has often been shown to operate within a neighborhood of immediately adjacent counties.  For 
example, the U.S. Census Bureau’s definition of metropolitan statistical areas (MSAs) includes a central 
city’s neighboring counties to make sure that people in suburban areas who still participate in the economic 
and social life of the central city are counted among the city’s population. 
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can be seen in Table 3, Lagrange Multiplier statistics for spatial lag and spatial error are 

both highly significant.  This indicates that the spatial autocorrelation in the natural  

increase rates probably violates the homoskadasticity and random sample assumptions8 

for OLS estimation of regression coefficients, and therefore, the OLS estimates can not 

be considered unbiased.  A spatial error model attempts to estimate the effect of 

heteroskadasticity and a spatial lag model attempts to control for the effect of spatial 

autocorrelation in the predictor variables (Anselin 1988).  A closer inspection of the 

spatial diagnostics reveals that the value for the Robust LM of the spatial error is more 

than three times that of the Robust LM of the spatial lag, which may indicate that a 

spatial error model may fit the data better.  The spatial error and spatial lag models have 

implications for the deconcentration process, which is discussed below. 

                                                 
8 Homoskadasticity is the assumption that the predictor variables are uncorrelated with the random 
disturbances (and likewise the regression residuals) in the outcome variable.  So for the current study, this 
would require NIRs to be uncorrelated with all of the unmeasured variables that may affect NMRs.  
Obviously my above discussion about the possibility that NIRs are indicators of socioeconomic prosperity 
is a direct refutation of the assumption that NIRs are uncorrelated with the random disturbances in Y.  The 
random sampling assumption within OLS estimation states that for all cases i and j, Σijxixj = 0, or in other 
words, every NIR is uncorrelated with every other NIR.  The Moran’s I reported above shows this 
assumption to be invalid as the NIRs that are located closer geographically are also more similar in their 
values, which another way of saying the NIRs are spatially autocorrelated. 

Table 3.  Spatial Diagnostics of Standard Regression. 

 Value Probability 

LM (lag) 3165.92 .0001 

LM (error) 3305.06 .0001 

   

Robust LM (lag) 50.39 .0001 

Robust LM (error) 189.53 .0001 
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Spatial Regression Models 

 Before estimating the spatial lag and spatial error models, it is important to 

consider the theoretical underpinnings of each model.  The spatial lag model takes the 

form: 

ερ ++= βXyy Wˆ  

where Wy is the multiplication of the neighborhood weight matrix by an n×1 vector of all 

the other values of y,  βX is an n×k matrix of explanatory variables multiplied by a k×1 

vector of parameters for each X, and ε is a normally distributed disturbance term.  In the 

above equation, ρ (Rho) is a scalar parameter that indicates the effect of the dependent 

variable in the neighborhood on the dependent variable in the target county; in other 

words, rho is the amount of spatial lag. So for the present application, the spatial lag 

model resembles: 

ε
βββ

βββ
ρ

+
+++

+++
=
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In general terms, a spatial lag model is often said to take into account the diffusion of a 

process – in this case migration of individuals – from one unit to other units in its 

neighborhood.  This means that a spatial lag model uses the natural increase rates of the 

three race/ethnic groups of the target county, the location of the target county within the 

trend surface, and the net migration of the surrounding neighborhood to predict net 

migration rates for each county.   

 The spatial error model takes a form described by the two equations: 
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ελ
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where βX is the same as the lag model, Wu is the neighborhood weight matrix multiplied 

by an n×1 vector of all the other disturbances of y, and ε is the normally distributed 

portion of the disturbances in y.  In the spatial error model, λ (Lambda) is a scalar 

parameter for the effect of the disturbances in the neighborhood on the dependent 

variable in the target county.  To summarize the current application: 

ελ
βββ

βββ
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If the OLS error term is thought of as an accumulation of both random effects and 

unmeasured predictor variables, the spatial error model disaggregates the two and places 

the effect of autocorrelated unmeasured variables in Lambda.  The spatial error model 

includes the same predictor variables and trend surface variables as the spatial lag model, 

but instead of including net migration rates from the surrounding counties, it specifies the 

amount of autocorrelated error in the neighborhood. 

 The second and third columns of Table 4 specify the parameters for the spatial lag 

and spatial error models, respectively.  To begin the comparison it is useful to examine 

the model fit statistics for both spatial models, and it is seen that there are very negligible 

differences between the two in terms of R2, AIC, and SC.  This was foreshadowed by the 

diagnostic statistics from the standard OLS model, which indicated that both spatial 

models would have highly significant contributions to net migration rate predictions.  

Furthermore, inclusion of a spatial coefficient in both models seems to have the same 

general effects on the other explanatory variables.  In both spatial models black and 
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Hispanic natural increase rates lose power in the model, while white natural increase rates 

remain robust. 

 The trend surface variables also show an interesting pattern, such that the effect of 

western (X) and coastal (X2) locations decreases but southern (Y) location remains 

significant.  The spatial coefficients in each model are also very similar in their 

magnitude and level of significance.  It is possible that the diffusion of net migration into 

neighboring counties is also contributing significantly to the autocorrelated portion of the 

error term.  Put another way, it is not only people that migrate into neighboring counties, 

but also a set of variables attached to the people – income, education, family members, or 

social ties, for example.  Combining the spatial lag and spatial error term in a single 

model creates a Simultaneous Autoregressive Moving Average (SARMA) model.  The 

Table 4.  Regression Coefficients of Standard Regression and Spatial Models. 

 Standard 
OLS Model 

Spatial Lag 
Model 

Spatial Error 
Model 

Full Model 
(SARMA) 

 Constant 0.1238*** 0.0264*** 0.1112*** -0.0090* 

Black NIR -0.0161* -0.0125 -0.0122 -0.0104 

Hispanic NIR 0.0160** 0.0120* 0.0113* 0.0095* 
Natural 

Increase 
Rates 

White NIR 0.7168*** 0.4452*** 0.5033*** 0.2239*** 

Rho (Lag)  0.7789***  1.0611*** Spatial 
Coefficients Lambda (Error)   0.7974*** -0.9416*** 

X -0.0847*** -0.0136 -0.0084 0.0091 

Y -0.5204*** -0.1309*** -0.4516** 0.0181 
Trend 

Surface 
X2 0.1894*** 0.0276 0.1639* -0.0244** 

      

Adjusted R2 0.1085 0.3553 0.3556 0.4176 

AIC -3977.62 -4853.84 -4848.95 -5187.33 

SC -3935.42 -4805.61 -4806.75 -5139.10 Model Fit 

Moran’s I of 
Residuals .3205*** -0.0251*** -0.0289*** 0.0059 

* p<.05, ** p<.01, *** p<.001   
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SARMA model is a useful tool for understanding the total effect of the deconcentration 

process. 

 The fourth column of Table 4 summarizes the parameters of the full model 

(SARMA).  Inspection of this model’s fit statistics reveals that the full model is the only 

one which yielded residuals free of spatial autocorrelation.  In other words, only the 

SARMA model could accurately predict the spatial distribution of net migration rates.  It 

also exhibited a higher R2, lower AIC, and lower SC, all of which indicate a much better 

model specification.  The full model’s coefficients for the three race/ethnic groups’ 

natural increase rates is consistent with the pattern observed in the first two spatial 

models; however, the coefficients for the trend surfaces become erratic and difficult to 

interpret in the full model.  The lack of explanatory power left in the trend surface 

Figure 5. 
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coefficients makes some sense because both Rho and Lambda are picking up spatial 

effects, which might leave little or no variance across regions in the net migration rates.  

On the other hand, it would have been convenient to find a model with both significant 

trend surface coefficients and significant spatial coefficients because such a model would 

lend evidence to both regionalization and deconcentration processes of population 

change.  The full model seems to indicate strong support to the conception of net 

migration as a local deconcentration process which also creates unmeasured 

autocorrelation in neighboring counties.  Figure 5 displays the predicted net migration 

rates from the fully specified spatial model, which can be compared to the actual rates 

displayed in Figure 1. 

CONCLUSIONS 

 The analyses above offer an interesting, if limited, view into the relationships 

between the two components of population change: natural increase rates and net 

migration rates.  One potential conclusion would be to discard natural increase rates and 

regionalization because of their relatively low explanatory power, and proclaim the 

dramatic effects of the spatial lag and spatial error seen in net migration rates.  However, 

it should be noted that both Hispanic and white natural increase rates continue to be 

significant predictors of net migration rates even in the fully specified spatial model.  

Again this brings to mind the debate about what natural increase rates are indicating in 

the model, as was addressed above, but does suggest that where people are giving birth, 

where they are dying, and where they are moving is related in important ways.  The 

results of this study also support the argument that race/ethnicity plays an important role 

in determining the residential sorting, net migration rates, and population growth rates of 
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counties across the nation.  Future research could attempt to disaggregate the 

relationships between natural increase rates and net migration rates by running models 

that only include one race/ethnic groups’ rates for each county.  For example, it would be 

possible to use only Hispanic natural increase rates to predict Hispanic net migration 

rates.  This would create new problems with missing and unspecified populations because 

the analyses would be based on many counties with no Hispanic population in 1990 or 

2000, and spatial analyses may be more sensitive to missing data problems.   

 In general, these analyses should lend strong support to the argument that the 

processes of population change – deconcentration, regionalization, and segregation – are 

spatially dependent.  Future research into segregation and deconcentration will need to 

incorporate space in a more exact way than hierarchical categories along a rural to urban 

continuum.  And although regionalization seemed to show many attractive ideas about 

population movement in the 1990s, the trend surface coefficients in the fully specified 

spatial model would suggest that large-scale determinants of migration are trumped by 

small-scale deconcentration.  However, these two processes may be complementary 

instead of contradictory.  For instance, when people move to the southern and coastal 

areas of the U.S., they may migrate at a higher proportion into suburban counties.  Thus, 

while population distribution processes seem to operate on both the deconcentration and 

regionalization levels, the small-scale trends pick up some of the effect for the national 

trends.  Building models that contain alternative measures of deconcentration, 

regionalization, and segregation in addition to the measures of natural increase rates used 

here, will result in a better understanding of the spatial patterns and trends in population 

distribution in the United States. 
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